
Name: |
JIANG Jingkun
|
Division: |
Division of Air Pollution and Its Control |
Title: |
Professor; Deputy Dean, School of Environment; Deputy Director, State Key Joint Laboratory of Environment Simulation and Pollution Control
|
Address: |
School of Environment, Tsinghua University, Beijing, 100084
|
Telephone: |
010-62781512
|
E-mail: |
|
Education background
2004.8 – 2008.8 Ph.D. in Energy, Environmental & Chemical Engineering, Washington University in St. Louis, USA
2002.8 – 2004.7 M.S. in Environmental Science and Engineering, Tsinghua University, China
1998.8 – 2002.7 B.S. (with honor) in Environmental Science and Engineering, Tsinghua University, China
Experience
2017 – present Professor, Tsinghua University
2010 – 2016 Associate Professor, Tsinghua University
2008 – 2010 Postdoctoral Research Associate, University of Minnesota
Journal and Society Service
Editor, Aerosol Science & Technology, 2016-present
Editorial Board, Results in Engineering, 2021-present
Editorial Board, Environmental Science & Technology Letters, 2019-present
Editorial Board, Environmental Research, 2019-present
Fissan-Pui-TSI Award Committee, International Aerosol Research Assembly, 2018
Technical Program Committee, 2018 International Aerosol Conference
Guest Editor, Atmospheric Chemistry and Physics, 2017-2020
Editor, Aerosol Science & Technology, 2016-2019
Teaching at Tsinghua
Theory and Practice: Air, for undergraduate students, 2021-present
Aerosol Mechanics, for graduate students, 2011-present
Air Quality Management, for undergraduate students, 2013-2020
Aerosol Measurement, for graduate students, 2012-2016
Research Interests
Air Pollution and Control; Aerosol Science and Technology; Environmental Monitoring
Selected Honors and Awards
ES&T Letters Excellence in Review Award, 2020
Young Faculty Excellent Teaching Award, Tsinghua University, 2019
Smoluchowski Award, Gesellschaft für Aerosolforschung (GAeF), 2018
Faculty Teaching Award, Tsinghua University, 2016, 2017, 2018
Asian Young Aerosol Scientist Award, Asian Aerosol Research Assembly, 2015
Doctoral Dissertation Award, Air and Waste Management Association, 2009
Academic Achievement
Selected Publications:
2022
1. Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities
Nie, W.; Yan, C.; Huang, D. D.; Wang, Z.; Liu, Y.; Qiao, X.; Guo, Y.; Tian, L.; Zheng, P.; Xu, Z.; Li, Y.; Xu, Z.; Qi, X.; Sun, P.; Wang, J.; Zheng, F.; Li, X.; Yin, R.; Dallenbach, K. R.; Bianchi, F.; Petäjä, T.; Zhang, Y.; Wang, M.; Schervish, M.; Wang, S.; Qiao, L.; Wang, Q.; Zhou, M.; Wang, H.; Yu, C.; Yao, D.; Guo, H.; Ye, P.; Lee, S.; Li, Y. J.; Liu, Y.; Chi, X.; Kerminen, V.-M.; Ehn, M.; Donahue, N. M.; Wang, T.; Huang, C.; Kulmala, M.; Worsnop, D.; Jiang*, J.; Ding*, A.
Nature Geoscience, 2022, 15: 255-261
2. Measuring size distributions of atmospheric aerosols using natural air ions
Li, Y.; X. Chen; J. Jiang*
Aerosol Science and Technology, 2022, 56: 655-664
3. Toxic potency-adjusted control of air pollution for solid fuel combustion
Wu, D.; H. Zheng; Q. Li; L. Jin; R. Lyu; X. Ding; Y. Huo; B. Zhao; J. Jiang;J. Chen; X. Li; S. Wang
Nature Energy, 2022, 7: 194-202
4. Application of smog chambers in atmospheric process studies
Chu, B.; T. Chen; Y. Liu; Q. Ma; Y. Mu; Y. Wang; J. Ma; P. Zhang; J. Liu; C. Liu; H. Gui; R. Hu; B. Hu; X. Wang; Y. Wang; J. Liu; P. Xie; J. Chen; Q. Liu; J. Jiang; J. Li; K. He; W. Liu; G. Jiang; J. Hao; H. He
National Science Review, 2022, 9: nwab103
5. Insufficient condensable organic vapors lead to slow growth of new particles in an urban environment
Li, X.; Li, Y.; Cai, R.; Yan, C.; Qiao, X.; Guo, Y.; Deng, C.; Yin, R.; Chen, Y.; Li, Y.; Yao, L.; Sarnela, N.; Zhang, Y.; Petäjä, T.; Bianchi, F.; Liu, Y.; Kulmala, M.; Hao, J.; Smith*, J. N.; Jiang*, J
Environ. Sci. & Technol., 2022, doi: 10.1021/acs.est.2c01566
6. Variations and Sources of Organic Aerosol in Winter Beijing under Markedly Reduced Anthropogenic Activities During COVID-2019
Hu, R.; S. Wang; H. Zheng; B. Zhao; C. Liang; X. Chang; Y. Jiang; R. Yin; J. Jiang; J. Hao
Environ. Sci. & Technol., 2022, doi: 10.1021/acs.est.1021c05125
7. Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving Conditions
Yang, D.; S. Zhu; Y. Ma; L. Zhou; F. Zheng; L. Wang; J. Jiang; J. Zheng
Environ. Sci. & Technol., 2022, 56: 5440-5447
8. Measurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecules and larger particles
Peng, C.; C. Deng; T. Lei; J. Zheng; J. Zhao; D. Wang; Z. Wu; L. Wang; Y. Chen; M. Liu; J. Jiang; A. Ye; M. Ge; W. Wang
J Environ. Sci., 2022, doi: 10.1016/j.jes.2022.03.006
9. Suggestion on further strengthening ultra-low emission standards for PM emission from coal-fired power plants in China
Deng, J.; S. Wang; J. Zhang;Y. Zhang; J. Jiang; Y. Gu; T. Han; L. Feng; J. Gao; L. Duan
J Environ. Sci., 2022, doi: 10.1016/j.jes.2022.03.007
10. The contribution of new particle formation and subsequent growth to haze formation
Kulmala, M.; R. Cai; D. Stolzenburg; Y. Zhou; L. Dada; Y. Guo; C. Yan; T. Petäjä; J. Jiang; V.-M. Kerminen
Environmental Science: Atmospheres, 2022, 2: 352-361
11. Detecting residual chemical disinfectant using an atomic Co–Nx–C anchored neuronal-like carbon catalyst modified amperometric sensor
Li, Z.; G. Jiang; Y. Wang; M. Tan; Y. Cao; E. Tian; L. Zhang; X. Chen; M. Zhao; Y. Jiang; Y. Luo; Y. Zheng; Z. Ma; D. Wang; W. Fu; K. Liu; C. Tang*; J. Jiang*
Environ. Sci.: Nano, 2022, 9: 1759-1769
12. Large contribution of non-priority PAHs in atmospheric fine particles: Insights from time-resolved measurement and nontarget analysis
An, Z.; X. Li; Y. Yuan; F. Duan; J. Jiang*
Environment International, 2022, 163: 107193
13. The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation
Wang, J.; Xing, J.; Wang, S.; Mathur, R.; Wang, J.; Zhang, Y.; Liu, C.; Pleim, J.; Ding, D.; Chang, X.; Jiang, J.; Zhao, P.; Sahu, S. K.; Jin, Y.; Wong, D. C.; Hao, J
Atmos. Chem. Phys., 2022, 22: 5147-5156
14. Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing
Hakala, S.; V. Vakkari; F. Bianchi; L. Dada; C. Deng; K. R. Dällenbach; Y. Fu; J. Jiang; J. Kangasluoma; J. Kujansuu; Y. Liu; T. Petäjä; L. Wang; C. Yan; M. Kulmala; P. Paasonen
Environmental Science: Atmospheres, 2022, 2: 146-164
15. Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases
Zhang, D.; Y. Yang; M. Li; Y. Lu; Y. Liu; J. Jiang; R. Liu; J. Liu; X. Huang; G. Li; J. Qu
Engineering, 2022, 10: 155-166
16. Significant Contribution of Coarse Black Carbon Particles to Light Absorption in North China Plain
Wang, J.; S. Wang; J. Wang; Y. Hua; C. Liu; J. Cai; Q. Xu; X. Xu; S. Jiang; G. Zheng; J. Jiang; R. Cai; W. Zhou; G. Chen; Y. Jin; Q. Zhang; J. Hao
Environmental Science & Technology Letters, 2022, 9(2): 134-139
17. Dynamic variations of phthalate esters in PM2.5 during a pollution episode
Li, X.; Z. An; Y. Shen; Y. Yuan; F. Duan; J. Jiang*
Science of The Total Environment, 2022, 810: 152269
18. An online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plants
Liu, A.; J. Yi; X. Ding; J. Deng; D. Wu; Y. Huo; J. Jiang; Q. Li; J. Chen
Journal of Hazardous Materials, 2022, 428: 128221
19. Cr-Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity
Zhang, J.; F. Lv; Z. Li*; G. Jiang; M. Tan; M. Yuan; Q. Zhang; Y. Cao; H. Zheng; L. Zhang; C. Tang; W. Fu; C. Liu; K. Liu; L. Gu; J. Jiang*; G. Zhang*; S. Guo*
Advanced Materials, 2022, 34(2): 2105276
20. Evaluation of a cost-effective roadside sensor platform for identifying high emitters
Shen, Y.; Q. Zhang; D. Wang; M. Tian; Q. Yu; J. Wang; H. Yin; S. Zhang; J. Hao; J. Jiang*
Science of The Total Environment, 2022, 816: 151609
21. Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters
Kulmala, M.; D. Stolzenburg; L. Dada; R. Cai; J. Kontkanen; C. Yan; J. Kangasluoma; L. R. Ahonen; L. Gonzalez-Carracedo; J. Sulo; S. Tuovinen; C. Deng; Y. Li; K. Lehtipalo; K. E. J. Lehtinen; T. Petäjä; P. M. Winkler; J. Jiang; V.-M. Kerminen
Journal of Aerosol Science, 2022, 159: 105878
22. Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing
Wang*, Y.; P. Clusius; C. Yan; K. Dällenbach; R. Yin; M. Wang; X.-C. He; B. Chu; Y. Lu; L. Dada; J. Kangasluoma; P. Rantala; C. Deng; Z. Lin; W. Wang; L. Yao; X. Fan; W. Du; J. Cai; L. Heikkinen; Y. J. Tham; Q. Zha; Z. Ling; H. Junninen; T. Petäjä; M. Ge; Y. Wang; H. He; D. R. Worsnop; V.-M. Kerminen; F. Bianchi; L. Wang; J. Jiang*; Y. Liu*; M. Boy; M. Ehn; N. M. Donahue; M. Kulmala*
Environmental Science & Technology, 2022, 56: 770-778
23. Emission characteristics of heavy metals from a typical copper smelting plant
Zhang, J.; X. Sun; J. Deng; G. Li; Z. Li; J. Jiang; Q. Wu; L. Duan
Journal of Hazardous Materials, 2022, 424: 127311
2021
24. Sulfuric acid-amine nucleation in urban Beijing
Cai, R.; C. Yan; D. Yang; R. Yin; Y. Lu; C. Deng; Y. Fu; J. Ruan; X. Li; J. Kontkanen; Q. Zhang; J. Kangasluoma; Y. Ma; J.M. Hao; D.R. Worsnop; F. Bianchi; P. Paasonen; V.M. Kerminen; Y. Liu; L. Wang; J. Zheng; M. Kulmala; J. Jiang*
Atmospheric Chemistry and Physics, 2021, 21(4): 2457-2468
25. Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing
Yin, R.; C. Yan; R. Cai; X. Li; J. Shen; Y. Lu; S. Schobesberger; Y. Fu; C. Deng; L. Wang; Y. Liu; J. Zheng; H. Xie; F. Bianchi; D. R. Worsnop; M. Kulmala; J. Jiang*
Environmental Science & Technology, 2021, 55: 10994-11005
26. Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment
Qiao, X.; C. Yan*; X. Li; Y. Guo; R. Yin; C. Deng; C. Li; W. Nie; M. Wang; R. Cai; D. Huang; Z. Wang; L. Yao; D. R. Worsnop; F. Bianchi; Y. Liu; N. M. Donahue; M. Kulmala; J. Jiang*
Environmental Science & Technology, 2021, 55: 13646-13656
27. Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China
Chu, B.; L. Dada; Y. Liu; L. Yao; Y. Wang; W. Du; J. Cai; K. R. Dällenbach; X. Chen; P. Simonen; Y. Zhou; C. Deng; Y. Fu; R. Yin; H. Li; X.-C. He; Z. Feng; C. Yan; J. Kangasluoma; F. Bianchi; J. Jiang; J. Kujansuu; V.-M. Kerminen; T. Petäjä; H. He; M. Kulmala
Science of The Total Environment, 2021, 753: 142207
28. Formation and growth of sub-3nm particles in megacities: impact of background aerosols
Deng, C.; R. Cai; C. Yan; J. Zheng; J. Jiang*
Faraday discussions, 2021, 226: 348-363
29. Bioaerosol: A Key Vessel between Environment and Health
Jiang, J.; M. Yao; J. Hwang ; C. Wang
Frontiers of Environmental Science & Engineering, 2021, 15(3): 49
30. An indicator for sulfuric acid–amine nucleation in atmospheric environments
Cai, R.; C. Yan; D. R. Worsnop; F. Bianchi; V.-M. Kerminen; Y. Liu; L. Wang; J. Zheng; M. Kulmala; J. Jiang*
Aerosol Science and Technology, 2021, 55: 1059-1069
31. Composition of Ultrafine Particles in Urban Beijing: Measurement Using a Thermal Desorption Chemical Ionization Mass Spectrometer
Li, X.; Y. Li; M.J. Lawler; J. Hao; J. Smith*; J. Jiang*
Environmental science & technology, 2021, 55(5): 2859-2868
32. Tracing the origins of SARS-CoV-2: lessons learned from the past
Wang, Q.; H. Chen; Y. Shi; A. C. Hughes; W. J. Liu; J. Jiang; G. F. Gao; Y. Xue; Y. Tong
Cell Research, 2021, 31: 1139-1141
33. SARS-CoV-2 spillover into hospital outdoor environments
Zhang, D.; X. Zhang; Y. Yang; X. Huang; J. Jiang; M. Li; H. Ling; J. Li;Y. Liu; G. Li; W. Li; C. Yi; T. Zhang; Y. Jiang; Y. Xiong; Z. He; X. Wang; S. Deng; P. Zhao; J. Qu
Journal of Hazardous Materials Letters, 2021, 2: 100027
34. Chronic Exposure to PM2.5 Nitrate, Sulfate, and Ammonium Causes Respiratory System Impairments in Mice
Zhang, J.; H. Cheng; D. Wang; Y. Zhu; C. Yang; Y. Shen; J. Yu; Y. Li; S. Xu; S. Zhang; X. Song; Y. Zhou; J. Chen; J. Jiang; L. Fan; C. Wang; K. Hao
Environmental science & technology, 2021, 55(5): 3081-3090
35. Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution
Zhang, J.; H. Cheng; D. Wang; Y. Zhu; C. Yang; Y. Shen; J. Yu; Y. Li; S. Xu; X. Song; Y. Zhou; J. Chen; L. Fan; J. Jiang; C. Wang; K. Hao
Environmental Pollution, 2021, 280: 116951
36. Improving data reliability: A quality control practice for low-cost PM2.5 sensor network
Qiao, X.; Q. Zhang; D. Wang; J. Hao; J. Jiang*
Science of The Total Environment, 2021, 779: 146381
37. The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing New-Particle Formation in Beijing
Yan, C.; R. Yin; Y. Lu; L. Dada; D. Yang; Y. Fu; J. Kontkanen; C. Deng; O. Garmash; J. Ruan; R. Baalbaki; M. Schervish; R. Cai; M. Bloss; T. Chan; T. Chen; Q. Chen; X. Chen; Y. Chen; B. Chu; K. Dällenbach; B. Foreback; X. He; L. Heikkinen; T. Jokinen; H. Junninen; J. Kangasluoma; T. Kokkonen; M. Kurppa; K. Lehtipalo; H. Li; H. Li; X. Li; Y. Liu; Q. Ma; P. Paasonen; P. Rantala; R.E. Pileci; A. Rusanen; N. Sarnela; P. Simonen; S. Wang; W. Wang; Y. Wang; M. Xue; G. Yang; L. Yao; Y. Zhou; J. Kujansuu; T. Petäjä; W. Nie; Y. Ma; M. Ge; H. He; N.M. Donahue; D.R. Worsnop; V.-M. Kerminen; L. Wang; Y. Liu*; J. Zheng*; M. Kulmala*; J. Jiang*; F. Bianchi*
Geophysical Research Letters, 2021, 48(7): e2020GL091944
38. Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?
Kulmala, M.; L. Dada; K.R. Daellenbach; C. Yan; D. Stolzenburg; J. Kontkanen; E. Ezhova; S. Hakala; S. Tuovinen; T.V. Kokkonen; M. Kurppa; R. Cai; Y. Zhou; R. Yin; R. Baalbaki; T. Chan; B. Chu; C. Deng; Y. Fu; M. Ge; H. He; L. Heikkinen; H. Junninen; Y. Liu; Y. Lu; W. Nie; A. Rusanen; V. Vakkari; Y. Wang; G. Yang; L. Yao; J. Zheng; J. Kujansuu; J. Kangasluoma; T. Petaja; P. Paasonen; L. Jarvi; D. Worsnop; A. Ding; Y. Liu; L. Wang; J. Jiang; F. Bianchi; V.-M. Kerminen
Faraday discussions, 2021, 226: 334-347
39. Impacts of coagulation on the appearance time method for new particle growth rate evaluation and their corrections
Cai, R.; C. Li; X.-C. He; C. Deng; Y. Lu; R. Yin; C. Yan; L. Wang; J. Jiang; M. Kulmala; J. Kangasluoma
Atmospheric Chemistry and Physics, 2021, 21(3): 2287-2304
40. Frontier review on comprehensive two-dimensional gas chromatography for measuring organic aerosol
An, Z.; X. Li; Z. Shi; B.J. Williams; R.M. Harrison; J. Jiang*
Journal of Hazardous Materials Letters, 2021, 2: 100013
41. General discussion: Aerosol formation and growth; VOC sources and secondary organic aerosols
Alam, M.S.; W. Bloss; J. Brean; P. Brimblecombe; C. Chan; Y. Chen; H. Coe; P. Fu; S. Gani; J. Hamilton; R. Harrison; J. Jiang; M. Kulmala; L. Lugon; G. McFiggans; A. Mehra; A. Milsom; B. Nelson; C. Pfrang; K. Sartelet; Z. Shi; D. Srivastava; G. Stewart; P. Styring; H. Su; D. van Pinxteren; E. Velasco; J.Z. Yu
Faraday discussions, 2021, 226: 479-501
42. Investigation of MOF-derived humidity-proof hierarchical porous carbon frameworks as highly-selective toluene absorbents and sensing materials
Li, Z.; Y. Yuan; H. Wu; X. Li; M. Yuan; H. Wang; X. Wu; S. Liu; X. Zheng; M. Kim; H. Zheng; S. Rehman; G. Jiang; W. Fu; J. Jiang*
Journal of Hazardous Materials, 2021, 411: 125034
2020
43. Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing
Deng, C.; Y. Fu; L. Dada; C. Yan; R. Cai; D. Yang; Y. Zhou; R. Yin; Y. Lu; X. Li; X. Qiao; X. Fan; W. Nie; J. Kontkanen; J. Kangasluoma; B. Chu; A. Ding; V.-M. Kerminen; P. Paasonen; D.R. Worsnop; F. Bianchi; Y. Liu; J. Zheng; L. Wang; M. Kulmala*; J. Jiang*
Environmental Science & Technology, 2020, 54: 8547-8557
44. Quantifying the Deposition of Airborne Particulate Matter Pollution on Skin Using Elemental Markers
Morgan, J.L.L.; A. Shauchuk; J.L. Meyers; A. Altemeier; X.H. Quo; M. Jones; E.D. Smith; J. Jiang
Environmental Science & Technology, 2020, 54(24): 15958-15967
45. Air pollutant emissions from coal-fired power plants in China over the past two decades
Wang, G.; J. Deng; Y. Zhang; Q. Zhang; L. Duan; J. Hao; J. Jiang*
Science of The Total Environment, 2020, 741: 140326
46. Three-dimensional tomography reveals distinct morphological and optical properties of soot aggregates from coal-fired residential stoves in China
Zhang, C.; W.R. Heinson; P. Liu; P. Beeler; Q. Li; J. Jiang; R.K. Chakrabarty
Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254: 107184
47. Unprecedented Ambient Sulfur Trioxide (SO3) Detection: Possible Formation Mechanism and Atmospheric Implications
Yao, L.; X.L. Fan; C. Yan; T. Kurten; K.R. Daellenbach; C. Li; Y.H. Wang; Y.S. Guo; L. Dada; M.P. Rissanen; J. Cai; Y.J. Tham; Q.Z. Zha; S.J. Zhang; W. Du; M. Yu; F.X. Zheng; Y. Zhou; J. Kontkanen; T. Chan; J.L. Shen; J.T. Kujansuu; J. Kangasluoma; J. Jiang; L. Wang; D.R. Worsnop; T. Petaja; V.M. Kerminen; Y.C. Liu; B.W. Chu; H. He; M. Kulmala; F. Bianchi
Environmental Science & Technology Letters, 2020, 7(11): 809-818
48. A Sampler for Collecting Fine Particles into Liquid Suspensions
Wang, D.; J. Jiang; J. Deng; Y. Li; J. Hao
Aerosol and Air Quality Research, 2020, 20(3): 654-662
49. Investigating the effectiveness of condensation sink based on heterogeneous nucleation theory
Tuovinen, S.; J. Kontkanen; J. Jiang; M. Kulmala
Journal of Aerosol Science, 2020, 149: 105613
50. Size-Resolved Chemical Composition of Sub-20 nm Particles from Methanesulfonic Acid Reactions with Methylamine and Ammonia
Perraud, V.; X. Li; J. Jiang; B.J. Finlayson-Pitts; J.N. Smith
ACS Earth and Space Chemistry, 2020, 4(7): 1182-1194
51. Ultrasonication to reduce particulate matter generated from bursting bubbles: A case study on zinc electrolysis
Ma, Z.; J. Jiang; L. Duan; Z. Li; J. Deng; J. Li; R. Zhang; C. Zhou; F. Xu; L. Jiang; N. Duan
Journal of Cleaner Production, 2020, 272: 122697
52. Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain
Ma, T.; H. Furutani; F. Duan; T. Kimoto; J. Jiang; Q. Zhang; X. Xu; Y. Wang; J. Gao; G. Geng; M. Li; S. Song; Y. Ma; F. Che; J. Wang; L. Zhu; T. Huang; M. Toyoda; K. He
Atmos. Chem. Phys., 2020, 20(10): 5887-5897
53. Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment
Liu, Y.; C. Yan; Z. Feng; F. Zheng; X. Fan; Y. Zhang; C. Li; Y. Zhou; Z. Lin; Y. Guo; Y. Zhang; L. Ma; W. Zhou; Z. Liu; L. Dada; K. Dällenbach; J. Kontkanen; R. Cai; T. Chan; B. Chu; W. Du; L. Yao; Y. Wang; J. Cai; J. Kangasluoma; T. Kokkonen; J. Kujansuu; A. Rusanen; C. Deng; Y. Fu; R. Yin; X. Li; Y. Lu; Y. Liu; C. Lian; D. Yang; W. Wang; M. Ge;Y. Wang; D.R. Worsnop; H. Junninen; H. He; V.-M. Kerminen; J. Zheng; L. Wang; J. Jiang; T. Petäjä; F. Bianchi; M. Kulmala
Big Earth Data, 2020, 4(3): 295-321
54. Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing
Li, X.X.; B. Zhao; W. Zhou; H.R. Shi; R.J. Yin; R.L. Cai; D.S. Yang; K. Dallenbach; C.J. Deng; Y.Y. Fu; X.H. Qiao; L. Wang; Y.C. Liu; C. Yan; M. Kulmala; J. Zheng; J.M. Hao; S.X. Wang; J. Jiang*
Science of the Total Environment, 2020, 721: 9
55. Wintertime Particulate Matter Decrease Buffered by Unfavorable Chemical Processes Despite Emissions Reductions in China
Leung, D.M.; H. Shi; B. Zhao; J. Wang; E.M. Ding; Y. Gu; H. Zheng; G. Chen; K.-N. Liou; S. Wang; J.D. Fast; G. Zheng; J. Jiang; X. Li; and J.H. Jiang
Geophysical Research Letters, 2020, 47: e2020GL087721
56 Size-resolved particle number emissions in Beijing determined from measured particle size distributions
Kontkanen, J.; C. Deng; Y. Fu; L. Dada; Y. Zhou; J. Cai; K.R. Daellenbach; S. Hakala; T.V. Kokkonen; Z. Lin; Y. Liu; Y. Wang; C. Yan; T. Petäjä; J. Jiang; M. Kulmala; P. Paasonen
Atmos. Chem. Phys., 2020, 20: 11329-11348
57. Overview of measurements and current instrumentation for 1–10 nm aerosol particle number size distributions
Kangasluoma, J.; R. Cai; J. Jiang; C. Deng; D. Stolzenburg; L.R. Ahonen;T. Chan; Y. Fu; C. Kim; T.M. Laurila; Y. Zhou; L. Dada; J. Sulo; R.C. Flagan; M. Kulmala; T. Petäjä; K. Lehtipalo
Journal of Aerosol Science, 2020, 148: 105584
58. Transmission via aerosols: Plausible differences among emerging coronaviruses
Jiang*, J.; Y. Vincent Fu; L. Liu; M. Kulmala
Aerosol Science and Technology, 2020, 54: 865-868
59. Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing
Hu, R.; Q. Xu; S. Wang; Y. Hua; N. Bhattarai; J. Jiang; Y. Song; K.R. Daellenbach; L. Qi; A.S.H. Prevot; J. Hao
Journal of Environmental Sciences, 2020, 95: 99-110
60. Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations
Dada, L.; I. Ylivinkka; R. Baalbaki; C. Li; Y. Guo; C. Yan; L. Yao; N. Sarnela; T. Jokinen; K.R. Daellenbach; R. Yin; C. Deng; B. Chu; T. Nieminen; Y. Wang; Z. Lin; R.C. Thakur; J. Kontkanen; D. Stolzenburg; M. Sipilä, T. Hussein; P. Paasonen; F. Bianchi; I. Salma; T. Weidinger; M. Pikridas; J. Sciare; J. Jiang; Y. Liu; T. Petäjä; V.M. Kerminen; M. Kulmala
Atmos. Chem. Phys., 2020, 20: 11747-11766
61. Comprehensive two-dimensional gas chromatography mass spectrometry with a solid-state thermal modulator for in-situ speciated measurement of organic aerosols
An, Z.; H. Ren; M. Xue; X. Guan; J. Jiang*
Journal of Chromatography A, 2020, 1625: 461336
62. Evaluating Airborne Condensable Particulate Matter Measurement Methods in Typical Stationary Sources in China
Wang, G.; Deng, J.; Zhang, Y.; Li, Y.; Ma, Z.; Hao, J.; Jiang*, J
Environmental Science & Technology, 2020, 54: 1363-1371
63. Significant ultrafine particle emissions from residential solid fuel combustion
Wang, D.; Li, Q.; Shen, G.; Deng, J.; Zhou, W.; Hao, J.; Jiang*, J
Science of The Total Environment, 2020, 715, 136992
64. Models for estimating nanoparticle transmission efficiency through an adverse axial electric field
Cai, R; J. Jiang*
Aerosol Science and Technology, 2020, 54: 332-341
65. Transmission of charged nanoparticles through the DMA adverse axial electric field and its improvement
Cai, R.; Y. Zhou; J. Jiang*
Aerosol Science and Technology, 2020, 54: 21-32
66. A Cost-effective, Miniature Electrical Ultrafine Particle Sizer (mini- eUPS) for Ultrafine Particle (UFP) Monitoring Network
Liu, Q.; D. Liu; X. Chen; Q. Zhang; J. Jiang; D.-R. Chen
Aerosol and Air Quality Research, 2020, 20: 231-241
67. Variation of size-segregated particle number concentrations in wintertime Beijing
Zhou, Y.; Dada, L.; Liu, Y.; Fu, Y.; Kangasluoma, J.; Chan, T.; Yan, C.; Chu, B.; Daellenbach, K. R.; Bianchi, F.; Kokkonen, T. V.; Liu, Y.; Kujansuu, J.; Kerminen, V. M.; Petäjä, T.; Wang, L.; Jiang, J.; Kulmala, M
Atmospheric Chemistry and Physics, 2020, 20: 1201-1216
68. China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002
Gao, M.; Liu, Z.; Zheng, B.; Ji, D.; Sherman, P.; Song, S.; Xin, J.; Liu, C.; Wang, Y.; Zhang, Q.; Xing, J.; Jiang, J.; Wang, Z.; Carmichael, G. R.; McElroy, M. B.
Atmospheric Chemistry and Physics, 2020, 20: 1497-1505
69. Cobalt Nanoparticles and Atomic Sites in Nitrogen-Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide
Li, Z.; R. Liu; C. Tang; Z. Wang; X. Chen; Y. Jiang; C. Wang; Y. Yuan; W. Wang; D. Wang; S. Chen; X. Zhang; Q. Zhang; J. Jiang*
Small, 2020, 16: 1902860
2019
70. Theoretical and experimental analysis of the core sampling method: Reducing diffusional losses in aerosol sampling line
Fu, Y.; M. Xue; R. Cai; J. Kangasluoma; J. Jiang*
Aerosol Science and Technology, 2019, 53: 793-801
71. Few-layered mesoporous graphene for high-performance toluene adsorption and regeneration
Wang, Y.; Z. Li; C. Tang; H. Ren; Q. Zhang; M. Xue; J. Xiong; D. Wang; Q. Yu; Z. He; F. Wei; J. Jiang*,
Environmental Science: Nano, 2019, 6: 3113-3122
72. A soft X-ray unipolar charger for ultrafine particles
Chen, X.; J. Jiang; D.-R. Chen
Journal of Aerosol Science, 2019, 133: 66-71
73. Maximizing the singly charged fraction of sub-micrometer particles using a unipolar charger
Chen, X.; J. Jiang; D.-R. Chen
Aerosol Science and Technology, 2019, 53: 990-997
74. Time-Resolved Intermediate-Volatility and Semivolatile Organic Compound Emissions from Household Coal Combustion in Northern China
Cai, S.; L. Zhu; S. Wang; A. Wisthaler; Q. Li; J. Jiang; J. Hao
Environmental Science & Technology, 2019, 53: 9269-9278
75. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China
Xu, Q.; S. Wang; J. Jiang; N. Bhattarai; X. Li; X. Chang; X. Qiu; M. Zheng; Y. Hua; J. Hao
Science of The Total Environment, 2019, 689: 1293-1303
76. Interactions between aerosol organic components and liquid water content during haze episodes in Beijing
Li, X.; S. Song; W. Zhou; J. Hao; D.R. Worsnop; J. Jiang*
Atmospheric Chemistry and Physics, 2019, 19: 12163-12174
77. Improving thermal desorption aerosol gas chromatography using a dual-trap design
Ren, H.; M. Xue; Z. An; J. Jiang*
Journal of Chromatography A, 2019, 1599: 247-252
78. Quartz filter-based thermal desorption gas chromatography mass spectrometry for in-situ molecular level measurement of ambient organic aerosols
Ren, H.; M. Xue; Z. An; W. Zhou; J. Jiang*
Journal of Chromatography A, 2019, 1589: 141-148
79. Relative humidity effect on the formation of highly oxidized molecules and new particles during monoterpene oxidation
Li, X.; S. Chee; J. Hao; J. P. D. Abbatt; J. Jiang*; J. N. Smith*
Atmospheric Chemistry and Physics, 2019, 19: 1555-1570
80. Characteristics of particulate matter from four coal-fired power plants with low-low temperature electrostatic precipitator in China
Wang, G.; Z. Ma; J. Deng; Z. Li; L. Duan; Q. Zhang; J. Hao; J. Jiang*
Science of the Total Environment, 2019, 662: 455-461
81. Characteristics of Individual Particles Emitted from an Experimental Burning Chamber with Coal from the Lung Cancer Area of Xuanwei, China
Wang, W.; L. Shao; J. Li; L. Chang; D. Zhang; C. Zhang; J. Jiang
Aerosol and Air Quality Research, 2019, 19: 355-36
82. Airway microbiome is associated with respiratory functions and responses to ambient particulate matter exposure
Wang, L.; H. Cheng; D. Wang; B. Zhao; J. Zhang; L. Cheng; P. Yao; A. Di Narzo; Y. Shen; J. Yu; Y. Li; S. Xu; J. Chen; L. Fan; J. Lu; J. Jiang; Y. Zhou; C. Wang; Z. Zhang; K. Hao
Ecotoxicology and Environmental Safety, 2019, 167: 269-277
83. Development and qualification of a VH-TDMA for the study of pure aerosols
Oxford, C. R.; C. M. Rapp; Y. Wang; P. Kumar; D. Watson; J. L. Portelli; E. A. Sussman; S. Dhawan; J. Jiang; B. J. Williams
Aerosol Science and Technology, 2019, 53: 120-132
84. A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing
Lu, Y.; C. Yan; Y. Fu; Y. Chen; Y. Liu; G. Yang; Y. Wang; F. Bianchi; B. Chu; Y. Zhou; R. Yin; R. Baalbaki; O. Garmash; C. Deng; W. Wang; Y. Liu; T. Petaja; V.-M. Kerminen; J. Jiang; M. Kulmala; L. Wang
Atmospheric Chemistry and Physics, 2019, 19: 1971-1983
85. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis
Li, Z.; H. He; H. Cao; S. Sun; W. Diao; D. Gao; P. Lu; S. Zhang; Z. Guo; M. Li; R. Liu; D. Ren; C. Liu; Y. Zhang; Z. Yang; J. Jiang; G. Zhang
Applied Catalysis B: Environmental, 2019, 240: 112-121
86. Significant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized products
Li, Q.; J. Qi; J. Jiang*; J. Wu*; L. Duan; S. Wang; J. Hao
Science of the Total Environment, 2019, 650: 653-660
87. Bio(3)Air, an integrative system for monitoring individual-level air pollutant exposure with high time and spatial resolution
Cheng, H.; L. Wang; D. Wang; J. Zhang; L. Cheng; P. Yao; Z. Zhang; A. Di Narzo; Y. Shen; J. Yu; C. Wang; L. Fan; J. Lu; J. Jiang; K. Hao
Ecotoxicology and Environmental Safety, 2019, 169: 756-763
88. Parameters governing the performance of electrical mobility spectrometers for measuring sub-3 nm particles
Cai, R.; J. Jiang; S. Mirme; J. Kangasluoma
Journal of Aerosol Science, 2019, 127: 102-115
2018
89. Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China
Wang, G.; J. Deng; Z. Ma; J. Hao; J. Jiang*
Science of the Total Environment, 2018, 639: 695-704
90. Contribution of Hydroxymethane Sulfonate to Ambient Particulate Matter: A Potential Explanation for High Particulate Sulfur During Severe Winter Haze in Beijing
Moch, J. M.; E. Dovrou; L. J. Mickley; F. N. Keutsch; Y. Cheng; D. J. Jacob; J. Jiang; M. Li; J. W. Munger; X. Qiao; Q. Zhang
Geophysical Research Letters, 2018, 45: 11969-11979
91. Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide
Li, Z.; Y. Jiang; Z. Wang; W. Wang; Y. Yuan; X. Wu; X. Liu; M. Li; S. Dilpazir; G. Zhang; D. Wang; C. Liu; J. Jiang*
Microchimica Acta, 2018, 185:501
92. Emerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detection
Li, Z.; Y. Jiang; C. Liu*; Z. Wang; Z. Cao; Y. Yuan; M. Li; Y. Wang; D. Fang; Z. Guo; D. Wang; G. Zhang; J. Jiang*
Environmental Science: Nano, 2018, 5: 1834-1843
93. Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China
Hua, Y.; S. Wang; J. Jiang; W. Zhou; Q. Xu; X. Li; B. Liu; D. Zhang; M. Zheng
Science of the Total Environment, 2018, 626: 519-527
94. Insights into extinction evolution during extreme low visibility events: Case study of Shanghai, China
Cheng, Z.; S. Wang; L. Qiao; H. Wang; M. Zhou; X. Fu; S. Lou; L. Luo; J. Jiang; C. Chen; X. Wang; J. Hao
Science of the Total Environment, 2018, 618: 793-803
95. Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers
Chen, X.; P. H. McMurry; J. Jiang*
Aerosol Science and Technology, 2018, 52: 809-813
96. Performance of Small Plate and Tube Unipolar Particle Chargers at Low Corona Current
Chen, X.; Q. Liu; J. Jiang; D.-R. Chen
Aerosol and Air Quality Research, 2018, 18: 2005-2013
97. Performance evaluation of a circular electrical aerosol classifier (CirEAC)
Chen, X.; Q. Liu; J. Jiang; D.-R. Chen
Journal of Aerosol Science, 2018, 118: 100-110
98. Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications
Chen, X.; J. Jiang*
Aerosol Science and Technology, 2018, 52: 1145-1155
99. Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier
Cai, R.; D. Yang; L. R. Ahonen; L. Shi; F. Korhonen; Y. Ma; J. Hao; T. Petaja; J. Zheng; J. Kangasluoma; J. Jiang*
Atmospheric Measurement Techniques, 2018, 11: 4477-4491
100. Estimating the influence of transport on aerosol size distributions during new particle formation events
Cai, R.; I. Chandra; D. Yang; L. Yao; Y. Fu; X. Li; Y. Lu; L. Luo; J. Hao; Y. Ma; L. Wang; J. Zheng; T. Seto; J. Jiang*
Atmospheric Chemistry and Physics, 2018, 18: 16587-16599
101. Characterization of a high-resolution supercritical differential mobility analyzer at reduced flow rates
Cai, R.; M. Attoui; J. Jiang; F. Korhonen; J. Hao; T. Petaja; J. Kangasluoma
Aerosol Science and Technology, 2018, 52: 1332-1343
2017
102. An optimized two-step derivatization method for analyzing diethylene glycol ozonation products using gas chromatography and mass spectrometry
Yu, R.; L. Duan; J. Jiang*; J. Hao
Journal of Environmental Sciences, 2017, 53: 313-321
103. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates
Xing, J.; J. Wang; R. Mathur; S. Wang; G. Sarwar; J. Pleim; C. Hogrefe; Y. Zhang; J. Jiang; D. C. Wong; J. Hao
Atmos. Chem. Phys., 2017, 17: 9869-9883
104. Six-day measurement of size-resolved indoor fluorescent bioaerosols of outdoor origin in an office
Xie, Y.; O. A. Fajardo; W. Yan; B. Zhao*; J. Jiang*
Particuology, 2017, 31: 161-169
105. New particle formation in China: Current knowledge and further directions
Wang, Z.; Z. Wu; D. Yue; D. Shang; S. Guo; J. Sun; A. Ding; L. Wang; J. Jiang; H. Guo; J. Gao; H. C. Cheung; L. Morawska; M. Keywood; M. Hu
Science of The Total Environment, 2017, 577: 258-266
106. Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes
Wang, Y.; S. Bao; S. Wang; Y. Hu; X. Shi; J. Wang; B. Zhao; J. Jiang; M. Zheng; M. Wu; A. G. Russell; Y. Wang; J. Hao
Science of The Total Environment, 2017, 580: 283-296
107. Particulate matter pollution over China and the effects of control policies
Wang, J.; B. Zhao; S. Wang; F. Yang; J. Xing; L. Morawska; A. Ding; M. Kulmala; V.-M. Kerminen; J. Kujansuu; Z. Wang; D. Ding; X. Zhang; H. Wang; M. Tian; T. Petäjä; J. Jiang; J. Hao
Science of The Total Environment, 2017, 584-585: 426-447
108. Nascent soot particle size distributions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flame
Tang, Q.; R. Cai; X. You*; J. Jiang*
Proceedings of the Combustion Institute, 2017, 36: 993-1000
109. Biocoal Briquettes Combusted in a Household Cooking Stove: Improved Thermal Efficiencies and Reduced Pollutant Emissions
Qi, J.; Q. Li; J. Wu*; J. Jiang*; Z. Miao; D. Li
Environmental Science & Technology, 2017, 51: 1886-1892
110. PM2.5 Emission Reduction by Technical Improvement in a Typical Coal-Fired Power Plant in China
Ma, Z.; Z. Li; J. Jiang; J. Deng; Y. Zhao; S. Wang; L. Duan
Aerosol and Air Quality Research, 2017, 17: 636-643
111. Impacts of coal burning on ambient PM2.5 pollution in China
Ma, Q.; S. Cai; S. Wang; B. Zhao; R. V. Martin; M. Brauer; A. Cohen; J. Jiang; W. Zhou; J. Hao; J. Frostad; M. H. Forouzanfar; R. T. Burnett
Atmos. Chem. Phys., 2017, 17: 4477-4491
112. Performance calibration of low-cost and portable particular matter (PM) sensors
Liu, D.; Q. Zhang; J. Jiang; D.-R. Chen
Journal of Aerosol Science, 2017, 112: 1-10
113. Boron Doped ZIF-67@Graphene Derived Carbon Electrocatalyst for Highly Efficient Enzyme-Free Hydrogen Peroxide Biosensor
Li, Z.; W. Wang; H. Cao; Q. Zhang; X. Zhou; D. Wang; Y. Wang; S. Zhang; G. Zhang; C. Liu; Y. Zhang; R. Liu*; J. Jiang*
Advanced Materials Technologies, 2017, 2: 1700224
114. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR)
Li, Z.; J. Jiang; Z. Ma; O. A. Fajardo; J. Deng; L. Duan
Environmental Pollution, 2017, 230: 655-662
115. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication
Li, Q.; J. Jiang*; S. X. Wang; K. Rumchev; R. Mead-Hunter; L. Morawska; J. M. Hao
Science of the Total Environment, 2017, 576: 347-361
116. Comparison of nanoparticle generation by two plasma techniques: Dielectric barrier discharge and spark discharge
Jiang, L.; Q. Li; D. Zhu; M. Attoui; Z. Deng; J. Tang; J. Jiang*
Aerosol Science and Technology, 2017, 51: 206-213
117. Modeling biogenic and anthropogenic secondary organic aerosol in China
Hu, J.; P. Wang; Q. Ying; H. Zhang; J. Chen; X. Ge; X. Li; J. Jiang; S. Wang; J. Zhang; Y. Zhao; Y. Zhang
Atmos. Chem. Phys., 2017, 17: 77-92
118. Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China
Cheng, Z.; X. Ma; Y. He; J. Jiang*; X. Wang; Y. Wang*; L. Sheng; J. Hu; N. Yan
Environmental Research, 2017, 156: 239-246
119. Aerosol surface area concentration: a governing factor in new particle formation in Beijing
Cai, R.; D. Yang; Y. Fu; X. Wang; X. Li; Y. Ma; J. Hao; J. Zheng*; J. Jiang*
Atmos. Chem. Phys., 2017, 17: 12327-12340
120. A new balance formula to estimate new particle formation rate: reevaluating the effect of coagulation scavenging
Cai, R.; J. Jiang*
Atmos. Chem. Phys., 2017, 17: 12659-12675
121. A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing
Cai, R.; D.-R. Chen; J. Hao; J. Jiang*
Journal of Aerosol Science, 2017, 106: 111-119
2016
122. Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process
Zhou, W.; J. Jiang*; L. Duan; J. Hao
Environmental Science & Technology, 2016, 50: 7861-7869
123. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies
Ma, Z.; J. Deng; Z. Li; Q. Li; P. Zhao; L. Wang; Y. Sun; H. Zheng; L. Pan; S. Zhao; J. Jiang*; S. Wang; L. Duan*
Atmospheric Environment, 2016, 131: 164-170
124. A spectrometer for measuring particle size distributions in the range of 3 nm to 10 μm
Liu, J.; J. Jiang*; Q. Zhang; J. Deng; J. Hao
Frontiers of Environmental Science & Engineering, 2016, 10: 63-72
125. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China
Li, Q.; X. Li; J. Jiang*; L. Duan; S. Ge; Q. Zhang; J. Deng; S. Wang; J. Hao*
Scientific Reports, 2016, 6: 19306
126. Influences of coal size, volatile matter content, and additive on primary particulate matter emissions from household stove combustion
Li, Q.; J. Jiang*; Q. Zhang; W. Zhou; S. Cai; L. Duan; S. Ge; J. Hao
Fuel, 2016, 182: 780-787
127. Improving the Energy Efficiency of Stoves To Reduce Pollutant Emissions from Household Solid Fuel Combustion in China
Li, Q.; J. Jiang*; J. Qi; J. Deng; D. Yang; J. Wu; L. Duan; J. Hao
Environmental Science & Technology Letters, 2016, 3: 369-374
128. Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies
Li, Q.; J. Jiang*; S. Cai; W. Zhou; S. Wang; L. Duan; J. Hao
Environmental Science & Technology Letters, 2016, 3: 98-103
129. Investigating the impact of regional transport on PM2.5 formation using vertical observation during APEC 2014 Summit in Beijing
Hua, Y.; S. Wang; J. Wang; J. Jiang; T. Zhang; Y. Song; L. Kang; W. Zhou; R. Cai; D. Wu; S. Fan; T. Wang; X. Tang; Q. Wei; F. Sun; Z. Xiao
Atmos. Chem. Phys., 2016, 16: 15451-15460
130. Continuous Measurement of Ambient Aerosol Liquid Water Content in Beijing
Fajardo, O. A.; J. Jiang*; J. Hao
Aerosol and Air Quality Research, 2016, 16: 1152-1164
131. Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth
Chu, B.; X. Zhang; Y. Liu; H. He; Y. Sun; J. Jiang; J. Li; J. Hao
Atmos. Chem. Phys., 2016, 16: 14219-14230
132. Status and characteristics of ambient PM2.5 pollution in global megacities
Cheng, Z.; L. Luo; S. Wang; Y. Wang; S. Sharma; H. Shimadera; X. Wang; M. Bressi; R. M. de Miranda; J. Jiang; W. Zhou; O. Fajardo; N. Yan; J. Hao
Environment International, 2016, 89-90: 212-221
2015
133. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities
Jiang, W.; P. Liang; B. Wang; J. Fang; J. Lang; G. Tian; J. Jiang; T. F. Zhu
Nature Protocols, 2015, 10: 768
134. Characteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement
Zheng, X.; Y. Wu; J. Jiang; S. Zhang; H. Liu; S. Song; Z. Li; X. Fan; L. Fu; J. Hao
Environmental Science & Technology, 2015, 49: 13492-13500
135. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement
Wang, Y.; J. Li; H. Jing; Q. Zhang; J. Jiang; P. Biswas
Aerosol Science and Technology, 2015, 49: 1063-1077
136. Assessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, China
Wang, J.; S. Wang; A. S. Voorhees; B. Zhao; C. Jang; J. Jiang; J. S. Fu; D. Ding; Y. Zhu; J. Hao
Atmospheric Environment, 2015, 123, Part B: 440-448
137. Impacts of load mass on real-world PM1 mass and number emissions from a heavy-duty diesel bus
Wang, C.; Y. Wu; J. Jiang; S. Zhang; Z. Li; X. Zheng; J. Hao
International Journal of Environmental Science and Technology, 2015, 12: 1261-1268
138. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China
Li, Z.; J. Jiang; Z. Ma; S. Wang; L. Duan
Atmospheric Environment, 2015, 120: 227-233
139. Improving the Removal Efficiency of Elemental Mercury by Pre-Existing Aerosol Particles in Double Dielectric Barrier Discharge Treatments
Li, Q.; J. Jiang*; L. Duan; J. Deng; L. Jiang; Z. Li; J. Hao
Aerosol Air Qual. Res., 2015, 15: 1506-1513
140. A Review of Aerosol Nanoparticle Formation from Ions
Li, Q.; J. Jiang*; J. Hao
Kona Powder and Particle Journal, 2015, 57-74
141. Particulate Matter Distributions in China during a Winter Period with Frequent Pollution Episodes (January 2013)
Jiang*, J.; W. Zhou; Z. Cheng; S. Wang; K. He; J. Hao
Aerosol and Air Quality Research, 2015, 15: 494-503
142. Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China
Hua, Y.; Z. Cheng; S. Wang; J. Jiang; D. Chen; S. Cai; X. Fu; Q. Fu; C. Chen; B. Xu; J. Yu
Atmospheric Environment, 2015, 123: 380-391
143. Estimation of Aerosol Mass Scattering Efficiencies under High Mass Loading: Case Study for the Megacity of Shanghai, China
Cheng, Z.; J. Jiang*; C. Chen; J. Gao; S. Wang*; J. G. Watson; H. Wang; J. Deng; B. Wang; M. Zhou; J. C. Chow; M. L. Pitchford; J. Hao
Environmental Science & Technology, 2015, 49: 831–838
2014
144. Enhanced sulfate formation during China's severe winter haze episode in January 2013 missing from current models
Wang, Y.; Q. Zhang; J. Jiang; W. Zhou; B. Wang; K. He; F. Duan; Q. Zhang; S. Philip; Y. Xie
Journal of Geophysical Research: Atmospheres, 2014, 119: 2013JD021426
145. Impact of aerosol-meteorology interactions on fine particle pollution during China's severe haze episode in January 2013
Wang, J. D.; S. X. Wang; J. Jiang; A. J. Ding; M. Zheng; B. Zhao; D. C. Wong; W. Zhou; G. J. Zheng; L. Wang; J. E. Pleim; J. M. Hao
Environmental Research Letters, 2014, 9: 094002
146. Ultrafine particle emissions from essential-oil-based mosquito repellent products
Liu, J.; D. Fung; J. Jiang*; Y. Zhu*
Indoor Air, 2014, 24: 327-335
147. Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate
Jiang*, J.; C. Kim; X. Wang; M. R. Stolzenburg; S. L. Kaufman; C. Qi; G. J. Sem; H. Sakurai; N. Hama; P. H. McMurry
Aerosol Science and Technology, 2014, 48: 1207-1216
148. Hygroscopicity of particles generated from photooxidation of alpha-pinene under different oxidation conditions in the presence of sulfate seed aerosols
Chu, B. W.; K. Wang; H. Takekawa; J. H. Li; W. Zhou; J. Jiang; Q. X. Ma; H. He; J. M. Hao
Journal of Environmental Sciences, 2014, 26: 129-139
149. Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in α-pinene photooxidation
Chu, B.; Y. Liu; J. Li; H. Takekawa; J. Liggio; S.-M. Li; J. Jiang; J. Hao; H. He
Environmental Pollution, 2014, 193: 88-93
150. Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011
Cheng, Z.; S. Wang; X. Fu; J. G. Watson; J. Jiang; Q. Fu; C. Chen; B. Xu; J. Yu; J. C. Chow; J. Hao
Atmospheric Chemistry and Physics, 2014, 14: 4573-4585
151. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event
Cao, C.; W. Jiang; B. Wang; J. Fang; J. Lang; G. Tian*; J. Jiang*; T. F. Zhu*
Environmental Science & Technology, 2014, 48: 1499-1507
2013
152. Assessing Young People’s Preferences in Urban Visibility in Beijing
Fajardo, O. A.; J. Jiang*; J. Hao*
Aerosol and Air Quality Research, 2013, 13: 1536-1543
153. Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation
Chu, B.; J. Hao; J. Li; H. Takekawa; K. Wang; J. Jiang
Frontiers of Environmental Science & Engineering, 2013, 7: 1-9
154. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China
Cheng, Z.; S. Wang; J. Jiang; Q. Fu; C. Chen; B. Xu; J. Yu; X. Fu; J. Hao
Environmental Pollution, 2013, 182: 101-110
155. Characteristics and health impacts of particulate matter pollution in China (2001–2011)
Cheng, Z.; J. Jiang*; O. Fajardo; S. Wan; J. Hao*
Atmospheric Environment, 2013, 65: 186-194
2012
156. Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China
Zhang, H.; S. Wang; J. Hao; L. Wan; J. Jiang; M. Zhang; H. E. S. Mestl; L. W. H. Alnes; K. Aunan; A. W. Mellouki
Atmospheric Environment, 2012, 51: 94-99
157. Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model
Zhang, H.; J. Li; Q. Ying; J. Z. Yu; D. Wu; Y. Cheng; K. He; J. Jiang
Atmospheric Environment, 2012, 62: 228-242
158. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions
Wiedensohler, A.; W. Birmili; A. Nowak; A. Sonntag; K. Weinhold; M. Merkel; B. Wehner; T. Tuch; S. Pfeifer; M. Fiebig; A. M. Fjaraa; E. Asmi; K. Sellegri; R. Depuy; H. Venzac; P. Villani; P. Laj; P. Aalto; J. A. Ogren; E. Swietlicki; P. Williams; P. Roldin; P. Quincey; C. Huglin; R. Fierz-Schmidhauser; M. Gysel; E. Weingartner; F. Riccobono; S. Santos; C. Gruning; K. Faloon; D. Beddows; R. Harrison; C. Monahan; S. G. Jennings; C. D. O'Dowd; A. Marinoni; H. G. Horn; L. Keck; J. Jiang; J. Scheckman; P. H. McMurry; Z. Deng; C. S. Zhao; M. Moerman; B. Henzing; G. de Leeuw; G. Loschau; S. Bastian
Atmospheric Measurement Techniques, 2012, 5: 657-685
159. Chemical characteristics of size-resolved PM2.5 at a roadside environment in Beijing, China
Song, S.; Y. Wu; J. Jiang; L. Yang; Y. Cheng; J. Hao
Environmental Pollution, 2012, 161: 215-221
160. Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data
Han, X.; N. Corson; P. Wade-Mercer; R. Gelein; J. Jiang; M. Sahu; P. Biswas; J. N. Finkelstein; A. Elde; G. Oberdörster
Toxicology, 2012, 297: 1-9
161. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx
Chu, B.; J. Hao; H. Takekawa; J. Li; K. Wang; J. Jiang
Atmospheric Environment, 2012, 55: 26-34
162. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer
Chen, M.; M. Titcombe; J. Jiang; C. Jen; C. Kuang; M. L. Fischer; F. L. Eisele; J. I. Siepmann; D. R. Hanson; J. Zhao; P. H. McMurry
PNAS, 2012, 109: 18713-18718
2011
163. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties
Suttiponparnit, K.; J. Jiang; M. Sahu; S. Suvachittanont; T. Charinpanitkul; P. Biswas
Nanoscale Research Letters, 2011, 6:
164. First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events
Jiang*, J.; J. Zhao; M. Chen; F. L. Eisele; J. Scheckman; B. J. Williams; C. Kuang; P. H. McMurry
Aerosol Science and Technology, 2011, 45: ii-v
165. Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm
Jiang*, J.; M. Chen; C. Kuang; M. Attoui; P. H. McMurry
Aerosol Science and Technology, 2011, 45: 510 - 521
166. Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification
Jiang, J.; M. Attoui; M. Heim; N. A. Brunelli; P. H. McMurry; G. Kasper; R. C. Flagan; K. Giapis; G. Mouret
Aerosol Science and Technology, 2011, 45: 480 - 492
167. Ambient Pressure Proton Transfer Mass Spectrometry: Detection of Amines and Ammonia
Hanson, D. R.; P. H. McMurry; J. Jiang; D. Tanne; L. G. Huey
Environmental Science & Technology, 2011, 45: 8881-8888
168. Validation of an LDH assay for assessing nanoparticle toxicity
Han, X.; R. Gelein; N. Corson; P. Wade-Mercer; J. Jiang; P. Biswas; J. N. Finkelstein; A. Elder; G. Oberdörster
Toxicology, 2011, 287: 99-104
2010 and before
169. Concept of Assessing Nanoparticle Hazards Considering Nanoparticle Dosemetric and Chemical/Biological Response Metrics
Rushton, E. K.; J. Jiang; S. S. Leonard; S. Eberly; V. Castranova; P. Biswas; A. Elder; X. Han; R. Gelein; J. Finkelstein; G. Oberdorster
Journal of Toxicology and Environmental Health, Part A, 2010, 73: 445 - 461
170. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies
Jiang, J.;G. Oberdörster; P. Biswas
Journal of Nanoparticle Research, 2009, 11: 77-89
171. Synthesis of visible light-active nanostructured TiOx (x < 2) photocatalysts in a flame aerosol reactor
Dhumal, S. Y.; T. L. Daulton; J. Jiang; B. Khomami; P. Biswas
Applied Catalysis B: Environmental, 2009, 86: 145-151
172.Crystal structure mediates mode of cell death in TiO2 nanotoxicity
Braydich-Stolle; L. K., N. M. Schaeublin; R. C. Murdock; J. Jiang; P. Biswas; J. J. Schlager; S. M. Hussain
Journal of Nanoparticle Research, 2009, 11: 1361-1374
173. Quench-Ring Assisted Flame Synthesis of SiO2-TiO2 Nanostructured Composite
Worathanakul, P.; J. Jiang; P. Biswas; P. Kongkachuichay
Journal of Nanoscience and Nanotechnology, 2008, 8: 6253-6259
174. One-step synthesis of noble metal-titanium dioxide nanocomposites in a flame aerosol reactor
Tiwari, V.; J. Jiang; V. Sethi; P. Biswas
Applied Catalysis A: General, 2008, 345: 241-246
175. Charged fraction and electrostatic collection of ultrafine and submicrometer particles formed during O2-CO2 coal combustion
Suriyawong, A.; C. J. Hogan; J. Jiang; P. Biswas
Fuel, 2008, 87: 673-682
176. Does nanoparticle activity depend upon size and crystal phase?
Jiang, J.; G. Oberdörster; A. Elder; R. Gelein; P. Mercer; P. Biswas
Nanotoxicology, 2008, 2: 33 - 42
177. Model for nanoparticle charging by diffusion, direct photoionization, and thermionization mechanisms
Jiang, J.; M. H. Lee; P. Biswas
Journal of Electrostatics, 2007, 65: 209-220
178. Aerosol charging and capture in the nanoparticle size range (6-15 nm) by direct photoionization and diffusion mechanisms
Jiang, J.; C. J. Hogan; D. R. Chen; P. Biswas
Journal of Applied Physics, 2007, 102: 034904
179. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology
Jiang, J.; D. R. Chen; P. Biswas
Nanotechnology, 2007, 18: 285603
180. Trends in anthropogenic mercury emissions in China from 1995 to 2003
Wu, Y.; S. X. Wang; D. G. Streets; J. M. Hao; M. Chan; J. Jiang
Environmental Science & Technology, 2006, 40: 5312-5318
181. Anthropogenic mercury emissions in China
Streets, D. G.; J. M. Hao; Y. Wu; J. Jiang; M. Chan; H. Z. Tian; X. B. Feng
Atmospheric Environment, 2005, 39: 7789-7806