JIANG Jingkun


Name:
JIANG Jingkun
Division: Division of Air Pollution and Its Control
Title: Professor;
Deputy Dean, School of Environment;
Deputy Director, State Key Joint Laboratory of Environment Simulation and Pollution Control
Address:
School of Environment, Tsinghua University, Beijing, 100084
Telephone:
010-62781512
E-mail:

 

Education background

2004.8 – 2008.8  Ph.D. in Energy, Environmental & Chemical Engineering, Washington University in St. Louis, USA
2002.8 – 2004.7  M.S. in Environmental Science and Engineering, Tsinghua University, China
1998.8 – 2002.7  B.S. (with honor) in Environmental Science and Engineering, Tsinghua University, China

Experience

2017 – present  Professor, Tsinghua University
2010 – 2016  Associate Professor, Tsinghua University
2008 – 2010  Postdoctoral Research Associate, University of Minnesota

Journal and Society Service

Editor, Aerosol Science & Technology, 2016-present

Editorial Board, Results in Engineering, 2021-present

Editorial Board, Environmental Science & Technology Letters, 2019-present

Editorial Board, Environmental Research, 2019-present

Fissan-Pui-TSI Award Committee, International Aerosol Research Assembly, 2018

Technical Program Committee, 2018 International Aerosol Conference

Guest Editor, Atmospheric Chemistry and Physics, 2017-2020

Editor, Aerosol Science & Technology, 2016-2019

Teaching at Tsinghua 

Theory and Practice: Air, for undergraduate students, 2021-present

Aerosol Mechanics, for graduate students, 2011-present

Air Quality Management, for undergraduate students, 2013-2020

Aerosol Measurement, for graduate students, 2012-2016

Research Interests

Air Pollution and Control; Aerosol Science and Technology; Environmental Monitoring

Selected Honors and Awards

ES&T Letters Excellence in Review Award, 2020

Young Faculty Excellent Teaching Award, Tsinghua University, 2019

Smoluchowski Award, Gesellschaft für Aerosolforschung (GAeF), 2018

Faculty Teaching Award, Tsinghua University, 2016, 2017, 2018

Asian Young Aerosol Scientist Award, Asian Aerosol Research Assembly, 2015

Doctoral Dissertation Award, Air and Waste Management Association, 2009

Academic Achievement

Selected Publications:


2022

1. Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities

Nie, W.; Yan, C.; Huang, D. D.; Wang, Z.; Liu, Y.; Qiao, X.; Guo, Y.; Tian, L.; Zheng, P.; Xu, Z.; Li, Y.; Xu, Z.; Qi, X.; Sun, P.; Wang, J.; Zheng, F.; Li, X.; Yin, R.; Dallenbach, K. R.; Bianchi, F.; Petäjä, T.; Zhang, Y.; Wang, M.; Schervish, M.; Wang, S.; Qiao, L.; Wang, Q.; Zhou, M.; Wang, H.; Yu, C.; Yao, D.; Guo, H.; Ye, P.; Lee, S.; Li, Y. J.; Liu, Y.; Chi, X.; Kerminen, V.-M.; Ehn, M.; Donahue, N. M.; Wang, T.; Huang, C.; Kulmala, M.; Worsnop, D.; Jiang*, J.; Ding*, A.

Nature Geoscience, 2022, 15: 255-261

2. Measuring size distributions of atmospheric aerosols using natural air ions

Li, Y.; X. Chen; J. Jiang*

Aerosol Science and Technology, 2022, 56: 655-664

3. Toxic potency-adjusted control of air pollution for solid fuel combustion

Wu, D.; H. Zheng; Q. Li; L. Jin; R. Lyu; X. Ding; Y. Huo; B. Zhao; J. Jiang;J. Chen; X. Li; S. Wang

Nature Energy, 2022, 7: 194-202

4. Application of smog chambers in atmospheric process studies

Chu, B.; T. Chen; Y. Liu; Q. Ma; Y. Mu; Y. Wang; J. Ma; P. Zhang; J. Liu; C. Liu; H. Gui; R. Hu; B. Hu; X. Wang; Y. Wang; J. Liu; P. Xie; J. Chen; Q. Liu; J. Jiang; J. Li; K. He; W. Liu; G. Jiang; J. Hao; H. He

National Science Review, 2022, 9: nwab103

5. Insufficient condensable organic vapors lead to slow growth of new particles in an urban environment

Li, X.; Li, Y.; Cai, R.; Yan, C.; Qiao, X.; Guo, Y.; Deng, C.; Yin, R.; Chen, Y.; Li, Y.; Yao, L.; Sarnela, N.; Zhang, Y.; Petäjä, T.; Bianchi, F.; Liu, Y.; Kulmala, M.; Hao, J.; Smith*, J. N.; Jiang*, J

Environ. Sci. & Technol., 2022, doi: 10.1021/acs.est.2c01566

6. Variations and Sources of Organic Aerosol in Winter Beijing under Markedly Reduced Anthropogenic Activities During COVID-2019

Hu, R.; S. Wang; H. Zheng; B. Zhao; C. Liang; X. Chang; Y. Jiang; R. Yin; J. Jiang; J. Hao

Environ. Sci. & Technol., 2022, doi: 10.1021/acs.est.1021c05125

7. Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving Conditions

Yang, D.; S. Zhu; Y. Ma; L. Zhou; F. Zheng; L. Wang; J. Jiang; J. Zheng

Environ. Sci. & Technol., 2022, 56: 5440-5447

8. Measurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecules and larger particles

Peng, C.; C. Deng; T. Lei; J. Zheng; J. Zhao; D. Wang; Z. Wu; L. Wang; Y. Chen; M. Liu; J. Jiang; A. Ye; M. Ge; W. Wang

J Environ. Sci., 2022, doi: 10.1016/j.jes.2022.03.006

9. Suggestion on further strengthening ultra-low emission standards for PM emission from coal-fired power plants in China

Deng, J.; S. Wang; J. Zhang;Y. Zhang; J. Jiang; Y. Gu; T. Han; L. Feng; J. Gao; L. Duan

J Environ. Sci., 2022, doi: 10.1016/j.jes.2022.03.007

10. The contribution of new particle formation and subsequent growth to haze formation

Kulmala, M.; R. Cai; D. Stolzenburg; Y. Zhou; L. Dada; Y. Guo; C. Yan; T. Petäjä; J. Jiang; V.-M. Kerminen

Environmental Science: Atmospheres, 2022, 2: 352-361

11. Detecting residual chemical disinfectant using an atomic Co–Nx–C anchored neuronal-like carbon catalyst modified amperometric sensor

Li, Z.; G. Jiang; Y. Wang; M. Tan; Y. Cao; E. Tian; L. Zhang; X. Chen; M. Zhao; Y. Jiang; Y. Luo; Y. Zheng; Z. Ma; D. Wang; W. Fu; K. Liu; C. Tang*; J. Jiang*

Environ. Sci.: Nano, 2022, 9: 1759-1769

12. Large contribution of non-priority PAHs in atmospheric fine particles: Insights from time-resolved measurement and nontarget analysis

An, Z.; X. Li; Y. Yuan; F. Duan; J. Jiang*

Environment International, 2022, 163: 107193

13. The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation

Wang, J.; Xing, J.; Wang, S.; Mathur, R.; Wang, J.; Zhang, Y.; Liu, C.; Pleim, J.; Ding, D.; Chang, X.; Jiang, J.; Zhao, P.; Sahu, S. K.; Jin, Y.; Wong, D. C.; Hao, J

Atmos. Chem. Phys., 2022, 22: 5147-5156

14. Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing

Hakala, S.; V. Vakkari; F. Bianchi; L. Dada; C. Deng; K. R. Dällenbach; Y. Fu; J. Jiang; J. Kangasluoma; J. Kujansuu; Y. Liu; T. Petäjä; L. Wang; C. Yan; M. Kulmala; P. Paasonen

Environmental Science: Atmospheres, 2022, 2: 146-164

15. Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases

Zhang, D.; Y. Yang; M. Li; Y. Lu; Y. Liu; J. Jiang; R. Liu; J. Liu; X. Huang; G. Li; J. Qu

Engineering, 2022, 10: 155-166

16. Significant Contribution of Coarse Black Carbon Particles to Light Absorption in North China Plain

Wang, J.; S. Wang; J. Wang; Y. Hua; C. Liu; J. Cai; Q. Xu; X. Xu; S. Jiang; G. Zheng; J. Jiang; R. Cai; W. Zhou; G. Chen; Y. Jin; Q. Zhang; J. Hao

Environmental Science & Technology Letters, 2022, 9(2): 134-139

17. Dynamic variations of phthalate esters in PM2.5 during a pollution episode

Li, X.; Z. An; Y. Shen; Y. Yuan; F. Duan; J. Jiang*

Science of The Total Environment, 2022, 810: 152269

18. An online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plants

Liu, A.; J. Yi; X. Ding; J. Deng; D. Wu; Y. Huo; J. Jiang; Q. Li; J. Chen

Journal of Hazardous Materials, 2022, 428: 128221

19. Cr-Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity

Zhang, J.; F. Lv; Z. Li*; G. Jiang; M. Tan; M. Yuan; Q. Zhang; Y. Cao; H. Zheng; L. Zhang; C. Tang; W. Fu; C. Liu; K. Liu; L. Gu; J. Jiang*; G. Zhang*; S. Guo*

Advanced Materials, 2022, 34(2): 2105276

20. Evaluation of a cost-effective roadside sensor platform for identifying high emitters

Shen, Y.; Q. Zhang; D. Wang; M. Tian; Q. Yu; J. Wang; H. Yin; S. Zhang; J. Hao; J. Jiang*

Science of The Total Environment, 2022, 816: 151609

21. Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters

Kulmala, M.; D. Stolzenburg; L. Dada; R. Cai; J. Kontkanen; C. Yan; J. Kangasluoma; L. R. Ahonen; L. Gonzalez-Carracedo; J. Sulo; S. Tuovinen; C. Deng; Y. Li; K. Lehtipalo; K. E. J. Lehtinen; T. Petäjä; P. M. Winkler; J. Jiang; V.-M. Kerminen

Journal of Aerosol Science, 2022, 159: 105878

22. Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing

Wang*, Y.; P. Clusius; C. Yan; K. Dällenbach; R. Yin; M. Wang; X.-C. He; B. Chu; Y. Lu; L. Dada; J. Kangasluoma; P. Rantala; C. Deng; Z. Lin; W. Wang; L. Yao; X. Fan; W. Du; J. Cai; L. Heikkinen; Y. J. Tham; Q. Zha; Z. Ling; H. Junninen; T. Petäjä; M. Ge; Y. Wang; H. He; D. R. Worsnop; V.-M. Kerminen; F. Bianchi; L. Wang; J. Jiang*; Y. Liu*; M. Boy; M. Ehn; N. M. Donahue; M. Kulmala*

Environmental Science & Technology, 2022, 56: 770-778

23. Emission characteristics of heavy metals from a typical copper smelting plant

Zhang, J.; X. Sun; J. Deng; G. Li; Z. Li; J. Jiang; Q. Wu; L. Duan

Journal of Hazardous Materials, 2022, 424: 127311


2021

24. Sulfuric acid-amine nucleation in urban Beijing

Cai, R.; C. Yan; D. Yang; R. Yin; Y. Lu; C. Deng; Y. Fu; J. Ruan; X. Li; J. Kontkanen; Q. Zhang; J. Kangasluoma; Y. Ma; J.M. Hao; D.R. Worsnop; F. Bianchi; P. Paasonen; V.M. Kerminen; Y. Liu; L. Wang; J. Zheng; M. Kulmala; J. Jiang*

Atmospheric Chemistry and Physics, 2021, 21(4): 2457-2468

25. Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing

Yin, R.; C. Yan; R. Cai; X. Li; J. Shen; Y. Lu; S. Schobesberger; Y. Fu; C. Deng; L. Wang; Y. Liu; J. Zheng; H. Xie; F. Bianchi; D. R. Worsnop; M. Kulmala; J. Jiang*

Environmental Science & Technology, 2021, 55: 10994-11005

26. Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment

Qiao, X.; C. Yan*; X. Li; Y. Guo; R. Yin; C. Deng; C. Li; W. Nie; M. Wang; R. Cai; D. Huang; Z. Wang; L. Yao; D. R. Worsnop; F. Bianchi; Y. Liu; N. M. Donahue; M. Kulmala; J. Jiang*

Environmental Science & Technology, 2021, 55: 13646-13656

27. Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China

Chu, B.; L. Dada; Y. Liu; L. Yao; Y. Wang; W. Du; J. Cai; K. R. Dällenbach; X. Chen; P. Simonen; Y. Zhou; C. Deng; Y. Fu; R. Yin; H. Li; X.-C. He; Z. Feng; C. Yan; J. Kangasluoma; F. Bianchi; J. Jiang; J. Kujansuu; V.-M. Kerminen; T. Petäjä; H. He; M. Kulmala

Science of The Total Environment, 2021, 753: 142207

28. Formation and growth of sub-3nm particles in megacities: impact of background aerosols

Deng, C.; R. Cai; C. Yan; J. Zheng; J. Jiang*

Faraday discussions, 2021, 226: 348-363

29. Bioaerosol: A Key Vessel between Environment and Health

Jiang, J.; M. Yao; J. Hwang ; C. Wang

Frontiers of Environmental Science & Engineering, 2021, 15(3): 49

30. An indicator for sulfuric acid–amine nucleation in atmospheric environments

Cai, R.; C. Yan; D. R. Worsnop; F. Bianchi; V.-M. Kerminen; Y. Liu; L. Wang; J. Zheng; M. Kulmala; J. Jiang*

Aerosol Science and Technology, 2021, 55: 1059-1069

31. Composition of Ultrafine Particles in Urban Beijing: Measurement Using a Thermal Desorption Chemical Ionization Mass Spectrometer

Li, X.; Y. Li; M.J. Lawler; J. Hao; J. Smith*; J. Jiang*

Environmental science & technology, 2021, 55(5): 2859-2868

32. Tracing the origins of SARS-CoV-2: lessons learned from the past

Wang, Q.; H. Chen; Y. Shi; A. C. Hughes; W. J. Liu; J. Jiang; G. F. Gao; Y. Xue; Y. Tong

Cell Research, 2021, 31: 1139-1141

33. SARS-CoV-2 spillover into hospital outdoor environments

Zhang, D.; X. Zhang; Y. Yang; X. Huang; J. Jiang; M. Li; H. Ling; J. Li;Y. Liu; G. Li; W. Li; C. Yi; T. Zhang; Y. Jiang; Y. Xiong; Z. He; X. Wang; S. Deng; P. Zhao; J. Qu

Journal of Hazardous Materials Letters, 2021, 2: 100027

34. Chronic Exposure to PM2.5 Nitrate, Sulfate, and Ammonium Causes Respiratory System Impairments in Mice

Zhang, J.; H. Cheng; D. Wang; Y. Zhu; C. Yang; Y. Shen; J. Yu; Y. Li; S. Xu; S. Zhang; X. Song; Y. Zhou; J. Chen; J. Jiang; L. Fan; C. Wang; K. Hao

Environmental science & technology, 2021, 55(5): 3081-3090

35. Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution

Zhang, J.; H. Cheng; D. Wang; Y. Zhu; C. Yang; Y. Shen; J. Yu; Y. Li; S. Xu; X. Song; Y. Zhou; J. Chen; L. Fan; J. Jiang; C. Wang; K. Hao

Environmental Pollution, 2021, 280: 116951

36. Improving data reliability: A quality control practice for low-cost PM2.5 sensor network

Qiao, X.; Q. Zhang; D. Wang; J. Hao; J. Jiang*

Science of The Total Environment, 2021, 779: 146381

37. The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing New-Particle Formation in Beijing

Yan, C.; R. Yin; Y. Lu; L. Dada; D. Yang; Y. Fu; J. Kontkanen; C. Deng; O. Garmash; J. Ruan; R. Baalbaki; M. Schervish; R. Cai; M. Bloss; T. Chan; T. Chen; Q. Chen; X. Chen; Y. Chen; B. Chu; K. Dällenbach; B. Foreback; X. He; L. Heikkinen; T. Jokinen; H. Junninen; J. Kangasluoma; T. Kokkonen; M. Kurppa; K. Lehtipalo; H. Li; H. Li; X. Li; Y. Liu; Q. Ma; P. Paasonen; P. Rantala; R.E. Pileci; A. Rusanen; N. Sarnela; P. Simonen; S. Wang; W. Wang; Y. Wang; M. Xue; G. Yang; L. Yao; Y. Zhou; J. Kujansuu; T. Petäjä; W. Nie; Y. Ma; M. Ge; H. He; N.M. Donahue; D.R. Worsnop; V.-M. Kerminen; L. Wang; Y. Liu*; J. Zheng*; M. Kulmala*; J. Jiang*; F. Bianchi*

Geophysical Research Letters, 2021, 48(7): e2020GL091944

38. Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?

Kulmala, M.; L. Dada; K.R. Daellenbach; C. Yan; D. Stolzenburg; J. Kontkanen; E. Ezhova; S. Hakala; S. Tuovinen; T.V. Kokkonen; M. Kurppa; R. Cai; Y. Zhou; R. Yin; R. Baalbaki; T. Chan; B. Chu; C. Deng; Y. Fu; M. Ge; H. He; L. Heikkinen; H. Junninen; Y. Liu; Y. Lu; W. Nie; A. Rusanen; V. Vakkari; Y. Wang; G. Yang; L. Yao; J. Zheng; J. Kujansuu; J. Kangasluoma; T. Petaja; P. Paasonen; L. Jarvi; D. Worsnop; A. Ding; Y. Liu; L. Wang; J. Jiang; F. Bianchi; V.-M. Kerminen

Faraday discussions, 2021, 226: 334-347

39. Impacts of coagulation on the appearance time method for new particle growth rate evaluation and their corrections

Cai, R.; C. Li; X.-C. He; C. Deng; Y. Lu; R. Yin; C. Yan; L. Wang; J. Jiang; M. Kulmala; J. Kangasluoma

Atmospheric Chemistry and Physics, 2021, 21(3): 2287-2304

40. Frontier review on comprehensive two-dimensional gas chromatography for measuring organic aerosol

An, Z.; X. Li; Z. Shi; B.J. Williams; R.M. Harrison; J. Jiang*

Journal of Hazardous Materials Letters, 2021, 2: 100013

41. General discussion: Aerosol formation and growth; VOC sources and secondary organic aerosols

Alam, M.S.; W. Bloss; J. Brean; P. Brimblecombe; C. Chan; Y. Chen; H. Coe; P. Fu; S. Gani; J. Hamilton; R. Harrison; J. Jiang; M. Kulmala; L. Lugon; G. McFiggans; A. Mehra; A. Milsom; B. Nelson; C. Pfrang; K. Sartelet; Z. Shi; D. Srivastava; G. Stewart; P. Styring; H. Su; D. van Pinxteren; E. Velasco; J.Z. Yu

Faraday discussions, 2021, 226: 479-501

42. Investigation of MOF-derived humidity-proof hierarchical porous carbon frameworks as highly-selective toluene absorbents and sensing materials

Li, Z.; Y. Yuan; H. Wu; X. Li; M. Yuan; H. Wang; X. Wu; S. Liu; X. Zheng; M. Kim; H. Zheng; S. Rehman; G. Jiang; W. Fu; J. Jiang*

Journal of Hazardous Materials, 2021, 411: 125034


2020

43. Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing

Deng, C.; Y. Fu; L. Dada; C. Yan; R. Cai; D. Yang; Y. Zhou; R. Yin; Y. Lu; X. Li; X. Qiao; X. Fan; W. Nie; J. Kontkanen; J. Kangasluoma; B. Chu; A. Ding; V.-M. Kerminen; P. Paasonen; D.R. Worsnop; F. Bianchi; Y. Liu; J. Zheng; L. Wang; M. Kulmala*; J. Jiang*

Environmental Science & Technology, 2020, 54: 8547-8557

44. Quantifying the Deposition of Airborne Particulate Matter Pollution on Skin Using Elemental Markers

Morgan, J.L.L.; A. Shauchuk; J.L. Meyers; A. Altemeier; X.H. Quo; M. Jones; E.D. Smith; J. Jiang

Environmental Science & Technology, 2020, 54(24): 15958-15967

45. Air pollutant emissions from coal-fired power plants in China over the past two decades

Wang, G.; J. Deng; Y. Zhang; Q. Zhang; L. Duan; J. Hao; J. Jiang*

Science of The Total Environment, 2020, 741: 140326

46. Three-dimensional tomography reveals distinct morphological and optical properties of soot aggregates from coal-fired residential stoves in China

Zhang, C.; W.R. Heinson; P. Liu; P. Beeler; Q. Li; J. Jiang; R.K. Chakrabarty

Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254: 107184

47. Unprecedented Ambient Sulfur Trioxide (SO3) Detection: Possible Formation Mechanism and Atmospheric Implications

Yao, L.; X.L. Fan; C. Yan; T. Kurten; K.R. Daellenbach; C. Li; Y.H. Wang; Y.S. Guo; L. Dada; M.P. Rissanen; J. Cai; Y.J. Tham; Q.Z. Zha; S.J. Zhang; W. Du; M. Yu; F.X. Zheng; Y. Zhou; J. Kontkanen; T. Chan; J.L. Shen; J.T. Kujansuu; J. Kangasluoma; J. Jiang; L. Wang; D.R. Worsnop; T. Petaja; V.M. Kerminen; Y.C. Liu; B.W. Chu; H. He; M. Kulmala; F. Bianchi

Environmental Science & Technology Letters, 2020, 7(11): 809-818

48. A Sampler for Collecting Fine Particles into Liquid Suspensions

Wang, D.; J. Jiang; J. Deng; Y. Li; J. Hao

Aerosol and Air Quality Research, 2020, 20(3): 654-662

49. Investigating the effectiveness of condensation sink based on heterogeneous nucleation theory

Tuovinen, S.; J. Kontkanen; J. Jiang; M. Kulmala

Journal of Aerosol Science, 2020, 149: 105613

50. Size-Resolved Chemical Composition of Sub-20 nm Particles from Methanesulfonic Acid Reactions with Methylamine and Ammonia

Perraud, V.; X. Li; J. Jiang; B.J. Finlayson-Pitts; J.N. Smith

ACS Earth and Space Chemistry, 2020, 4(7): 1182-1194

51. Ultrasonication to reduce particulate matter generated from bursting bubbles: A case study on zinc electrolysis

Ma, Z.; J. Jiang; L. Duan; Z. Li; J. Deng; J. Li; R. Zhang; C. Zhou; F. Xu; L. Jiang; N. Duan

Journal of Cleaner Production, 2020, 272: 122697

52. Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain

Ma, T.; H. Furutani; F. Duan; T. Kimoto; J. Jiang; Q. Zhang; X. Xu; Y. Wang; J. Gao; G. Geng; M. Li; S. Song; Y. Ma; F. Che; J. Wang; L. Zhu; T. Huang; M. Toyoda; K. He

Atmos. Chem. Phys., 2020, 20(10): 5887-5897

53. Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment

Liu, Y.; C. Yan; Z. Feng; F. Zheng; X. Fan; Y. Zhang; C. Li; Y. Zhou; Z. Lin; Y. Guo; Y. Zhang; L. Ma; W. Zhou; Z. Liu; L. Dada; K. Dällenbach; J. Kontkanen; R. Cai; T. Chan; B. Chu; W. Du; L. Yao; Y. Wang; J. Cai; J. Kangasluoma; T. Kokkonen; J. Kujansuu; A. Rusanen; C. Deng; Y. Fu; R. Yin; X. Li; Y. Lu; Y. Liu; C. Lian; D. Yang; W. Wang; M. Ge;Y. Wang; D.R. Worsnop; H. Junninen; H. He; V.-M. Kerminen; J. Zheng; L. Wang; J. Jiang; T. Petäjä; F. Bianchi; M. Kulmala

Big Earth Data, 2020, 4(3): 295-321

54. Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing

Li, X.X.; B. Zhao; W. Zhou; H.R. Shi; R.J. Yin; R.L. Cai; D.S. Yang; K. Dallenbach; C.J. Deng; Y.Y. Fu; X.H. Qiao; L. Wang; Y.C. Liu; C. Yan; M. Kulmala; J. Zheng; J.M. Hao; S.X. Wang; J. Jiang*

Science of the Total Environment, 2020, 721: 9

55. Wintertime Particulate Matter Decrease Buffered by Unfavorable Chemical Processes Despite Emissions Reductions in China

Leung, D.M.; H. Shi; B. Zhao; J. Wang; E.M. Ding; Y. Gu; H. Zheng; G. Chen; K.-N. Liou; S. Wang; J.D. Fast; G. Zheng; J. Jiang; X. Li; and J.H. Jiang

Geophysical Research Letters, 2020, 47: e2020GL087721

56 Size-resolved particle number emissions in Beijing determined from measured particle size distributions

Kontkanen, J.; C. Deng; Y. Fu; L. Dada; Y. Zhou; J. Cai; K.R. Daellenbach; S. Hakala; T.V. Kokkonen; Z. Lin; Y. Liu; Y. Wang; C. Yan; T. Petäjä; J. Jiang; M. Kulmala; P. Paasonen

Atmos. Chem. Phys., 2020, 20: 11329-11348

57. Overview of measurements and current instrumentation for 1–10 nm aerosol particle number size distributions

Kangasluoma, J.; R. Cai; J. Jiang; C. Deng; D. Stolzenburg; L.R. Ahonen;T. Chan; Y. Fu; C. Kim; T.M. Laurila; Y. Zhou; L. Dada; J. Sulo; R.C. Flagan; M. Kulmala; T. Petäjä; K. Lehtipalo

Journal of Aerosol Science, 2020, 148: 105584

58. Transmission via aerosols: Plausible differences among emerging coronaviruses

Jiang*, J.; Y. Vincent Fu; L. Liu; M. Kulmala

Aerosol Science and Technology, 2020, 54: 865-868

59. Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing

Hu, R.; Q. Xu; S. Wang; Y. Hua; N. Bhattarai; J. Jiang; Y. Song; K.R. Daellenbach; L. Qi; A.S.H. Prevot; J. Hao

Journal of Environmental Sciences, 2020, 95: 99-110

60. Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations

Dada, L.; I. Ylivinkka; R. Baalbaki; C. Li; Y. Guo; C. Yan; L. Yao; N. Sarnela; T. Jokinen; K.R. Daellenbach; R. Yin; C. Deng; B. Chu; T. Nieminen; Y. Wang; Z. Lin; R.C. Thakur; J. Kontkanen; D. Stolzenburg; M. Sipilä, T. Hussein; P. Paasonen; F. Bianchi; I. Salma; T. Weidinger; M. Pikridas; J. Sciare; J. Jiang; Y. Liu; T. Petäjä; V.M. Kerminen; M. Kulmala

Atmos. Chem. Phys., 2020, 20: 11747-11766

61. Comprehensive two-dimensional gas chromatography mass spectrometry with a solid-state thermal modulator for in-situ speciated measurement of organic aerosols

An, Z.; H. Ren; M. Xue; X. Guan; J. Jiang*

Journal of Chromatography A, 2020, 1625: 461336

62. Evaluating Airborne Condensable Particulate Matter Measurement Methods in Typical Stationary Sources in China

Wang, G.; Deng, J.; Zhang, Y.; Li, Y.; Ma, Z.; Hao, J.; Jiang*, J

Environmental Science & Technology, 2020, 54: 1363-1371

63. Significant ultrafine particle emissions from residential solid fuel combustion

Wang, D.; Li, Q.; Shen, G.; Deng, J.; Zhou, W.; Hao, J.; Jiang*, J

Science of The Total Environment, 2020, 715, 136992

64. Models for estimating nanoparticle transmission efficiency through an adverse axial electric field

Cai, R; J. Jiang*

Aerosol Science and Technology, 2020, 54: 332-341

65. Transmission of charged nanoparticles through the DMA adverse axial electric field and its improvement

Cai, R.; Y. Zhou; J. Jiang*

Aerosol Science and Technology, 2020, 54: 21-32

66. A Cost-effective, Miniature Electrical Ultrafine Particle Sizer (mini- eUPS) for Ultrafine Particle (UFP) Monitoring Network

Liu, Q.; D. Liu; X. Chen; Q. Zhang; J. Jiang; D.-R. Chen

Aerosol and Air Quality Research, 2020, 20: 231-241

67. Variation of size-segregated particle number concentrations in wintertime Beijing

Zhou, Y.; Dada, L.; Liu, Y.; Fu, Y.; Kangasluoma, J.; Chan, T.; Yan, C.; Chu, B.; Daellenbach, K. R.; Bianchi, F.; Kokkonen, T. V.; Liu, Y.; Kujansuu, J.; Kerminen, V. M.; Petäjä, T.; Wang, L.; Jiang, J.; Kulmala, M

Atmospheric Chemistry and Physics, 2020, 20: 1201-1216

68. China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002

Gao, M.; Liu, Z.; Zheng, B.; Ji, D.; Sherman, P.; Song, S.; Xin, J.; Liu, C.; Wang, Y.; Zhang, Q.; Xing, J.; Jiang, J.; Wang, Z.; Carmichael, G. R.; McElroy, M. B.

Atmospheric Chemistry and Physics, 2020, 20: 1497-1505

69. Cobalt Nanoparticles and Atomic Sites in Nitrogen-Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide

Li, Z.; R. Liu; C. Tang; Z. Wang; X. Chen; Y. Jiang; C. Wang; Y. Yuan; W. Wang; D. Wang; S. Chen; X. Zhang; Q. Zhang; J. Jiang*

Small, 2020, 16: 1902860


2019

70. Theoretical and experimental analysis of the core sampling method: Reducing diffusional losses in aerosol sampling line

Fu, Y.; M. Xue; R. Cai; J. Kangasluoma; J. Jiang*

Aerosol Science and Technology, 2019, 53: 793-801

71. Few-layered mesoporous graphene for high-performance toluene adsorption and regeneration

Wang, Y.; Z. Li; C. Tang; H. Ren; Q. Zhang; M. Xue; J. Xiong; D. Wang; Q. Yu; Z. He; F. Wei; J. Jiang*,

Environmental Science: Nano, 2019, 6: 3113-3122

72. A soft X-ray unipolar charger for ultrafine particles

Chen, X.; J. Jiang; D.-R. Chen

Journal of Aerosol Science, 2019, 133: 66-71

73. Maximizing the singly charged fraction of sub-micrometer particles using a unipolar charger

Chen, X.; J. Jiang; D.-R. Chen

Aerosol Science and Technology, 2019, 53: 990-997

74. Time-Resolved Intermediate-Volatility and Semivolatile Organic Compound Emissions from Household Coal Combustion in Northern China

Cai, S.; L. Zhu; S. Wang; A. Wisthaler; Q. Li; J. Jiang; J. Hao

Environmental Science & Technology, 2019, 53: 9269-9278

75. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China

Xu, Q.; S. Wang; J. Jiang; N. Bhattarai; X. Li; X. Chang; X. Qiu; M. Zheng; Y. Hua; J. Hao

Science of The Total Environment, 2019, 689: 1293-1303

76. Interactions between aerosol organic components and liquid water content during haze episodes in Beijing

Li, X.; S. Song; W. Zhou; J. Hao; D.R. Worsnop; J. Jiang*

Atmospheric Chemistry and Physics, 2019, 19: 12163-12174

77. Improving thermal desorption aerosol gas chromatography using a dual-trap design

Ren, H.; M. Xue; Z. An; J. Jiang*

Journal of Chromatography A, 2019, 1599: 247-252

78. Quartz filter-based thermal desorption gas chromatography mass spectrometry for in-situ molecular level measurement of ambient organic aerosols

Ren, H.; M. Xue; Z. An; W. Zhou; J. Jiang*

Journal of Chromatography A, 2019, 1589: 141-148

79. Relative humidity effect on the formation of highly oxidized molecules and new particles during monoterpene oxidation

Li, X.; S. Chee; J. Hao; J. P. D. Abbatt; J. Jiang*; J. N. Smith*

Atmospheric Chemistry and Physics, 2019, 19: 1555-1570

80. Characteristics of particulate matter from four coal-fired power plants with low-low temperature electrostatic precipitator in China

Wang, G.; Z. Ma; J. Deng; Z. Li; L. Duan; Q. Zhang; J. Hao; J. Jiang*

Science of the Total Environment, 2019, 662: 455-461

81. Characteristics of Individual Particles Emitted from an Experimental Burning Chamber with Coal from the Lung Cancer Area of Xuanwei, China

Wang, W.; L. Shao; J. Li; L. Chang; D. Zhang; C. Zhang; J. Jiang

Aerosol and Air Quality Research, 2019, 19: 355-36

82. Airway microbiome is associated with respiratory functions and responses to ambient particulate matter exposure

Wang, L.; H. Cheng; D. Wang; B. Zhao; J. Zhang; L. Cheng; P. Yao; A. Di Narzo; Y. Shen; J. Yu; Y. Li; S. Xu; J. Chen; L. Fan; J. Lu; J. Jiang; Y. Zhou; C. Wang; Z. Zhang; K. Hao

Ecotoxicology and Environmental Safety, 2019, 167: 269-277

83. Development and qualification of a VH-TDMA for the study of pure aerosols

Oxford, C. R.; C. M. Rapp; Y. Wang; P. Kumar; D. Watson; J. L. Portelli; E. A. Sussman; S. Dhawan; J. Jiang; B. J. Williams

Aerosol Science and Technology, 2019, 53: 120-132

84. A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing

Lu, Y.; C. Yan; Y. Fu; Y. Chen; Y. Liu; G. Yang; Y. Wang; F. Bianchi; B. Chu; Y. Zhou; R. Yin; R. Baalbaki; O. Garmash; C. Deng; W. Wang; Y. Liu; T. Petaja; V.-M. Kerminen; J. Jiang; M. Kulmala; L. Wang

Atmospheric Chemistry and Physics, 2019, 19: 1971-1983

85. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis

Li, Z.; H. He; H. Cao; S. Sun; W. Diao; D. Gao; P. Lu; S. Zhang; Z. Guo; M. Li; R. Liu; D. Ren; C. Liu; Y. Zhang; Z. Yang; J. Jiang; G. Zhang

Applied Catalysis B: Environmental, 2019, 240: 112-121

86. Significant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized products

Li, Q.; J. Qi; J. Jiang*; J. Wu*; L. Duan; S. Wang; J. Hao

Science of the Total Environment, 2019, 650: 653-660

87. Bio(3)Air, an integrative system for monitoring individual-level air pollutant exposure with high time and spatial resolution

Cheng, H.; L. Wang; D. Wang; J. Zhang; L. Cheng; P. Yao; Z. Zhang; A. Di Narzo; Y. Shen; J. Yu; C. Wang; L. Fan; J. Lu; J. Jiang; K. Hao

Ecotoxicology and Environmental Safety, 2019, 169: 756-763

88. Parameters governing the performance of electrical mobility spectrometers for measuring sub-3 nm particles

Cai, R.; J. Jiang; S. Mirme; J. Kangasluoma

Journal of Aerosol Science, 2019, 127: 102-115


2018

89. Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China

Wang, G.; J. Deng; Z. Ma; J. Hao; J. Jiang*

Science of the Total Environment, 2018, 639: 695-704

90. Contribution of Hydroxymethane Sulfonate to Ambient Particulate Matter: A Potential Explanation for High Particulate Sulfur During Severe Winter Haze in Beijing

Moch, J. M.; E. Dovrou; L. J. Mickley; F. N. Keutsch; Y. Cheng; D. J. Jacob; J. Jiang; M. Li; J. W. Munger; X. Qiao; Q. Zhang

Geophysical Research Letters, 2018, 45: 11969-11979

91. Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide

Li, Z.; Y. Jiang; Z. Wang; W. Wang; Y. Yuan; X. Wu; X. Liu; M. Li; S. Dilpazir; G. Zhang; D. Wang; C. Liu; J. Jiang*

Microchimica Acta, 2018, 185:501

92. Emerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detection

Li, Z.; Y. Jiang; C. Liu*; Z. Wang; Z. Cao; Y. Yuan; M. Li; Y. Wang; D. Fang; Z. Guo; D. Wang; G. Zhang; J. Jiang*

Environmental Science: Nano, 2018, 5: 1834-1843

93. Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China

Hua, Y.; S. Wang; J. Jiang; W. Zhou; Q. Xu; X. Li; B. Liu; D. Zhang; M. Zheng

Science of the Total Environment, 2018, 626: 519-527

94. Insights into extinction evolution during extreme low visibility events: Case study of Shanghai, China

Cheng, Z.; S. Wang; L. Qiao; H. Wang; M. Zhou; X. Fu; S. Lou; L. Luo; J. Jiang; C. Chen; X. Wang; J. Hao

Science of the Total Environment, 2018, 618: 793-803

95. Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers

Chen, X.; P. H. McMurry; J. Jiang*

Aerosol Science and Technology, 2018, 52: 809-813

96. Performance of Small Plate and Tube Unipolar Particle Chargers at Low Corona Current

Chen, X.; Q. Liu; J. Jiang; D.-R. Chen

Aerosol and Air Quality Research, 2018, 18: 2005-2013

97. Performance evaluation of a circular electrical aerosol classifier (CirEAC)

Chen, X.; Q. Liu; J. Jiang; D.-R. Chen

Journal of Aerosol Science, 2018, 118: 100-110

98. Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications

Chen, X.; J. Jiang*

Aerosol Science and Technology, 2018, 52: 1145-1155

99. Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier

Cai, R.; D. Yang; L. R. Ahonen; L. Shi; F. Korhonen; Y. Ma; J. Hao; T. Petaja; J. Zheng; J. Kangasluoma; J. Jiang*

Atmospheric Measurement Techniques, 2018, 11: 4477-4491

100. Estimating the influence of transport on aerosol size distributions during new particle formation events

Cai, R.; I. Chandra; D. Yang; L. Yao; Y. Fu; X. Li; Y. Lu; L. Luo; J. Hao; Y. Ma; L. Wang; J. Zheng; T. Seto; J. Jiang*

Atmospheric Chemistry and Physics, 2018, 18: 16587-16599

101. Characterization of a high-resolution supercritical differential mobility analyzer at reduced flow rates

Cai, R.; M. Attoui; J. Jiang; F. Korhonen; J. Hao; T. Petaja; J. Kangasluoma

Aerosol Science and Technology, 2018, 52: 1332-1343


2017

102. An optimized two-step derivatization method for analyzing diethylene glycol ozonation products using gas chromatography and mass spectrometry

Yu, R.; L. Duan; J. Jiang*; J. Hao

Journal of Environmental Sciences, 2017, 53: 313-321

103. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates

Xing, J.; J. Wang; R. Mathur; S. Wang; G. Sarwar; J. Pleim; C. Hogrefe; Y. Zhang; J. Jiang; D. C. Wong; J. Hao

Atmos. Chem. Phys., 2017, 17: 9869-9883

104. Six-day measurement of size-resolved indoor fluorescent bioaerosols of outdoor origin in an office

Xie, Y.; O. A. Fajardo; W. Yan; B. Zhao*; J. Jiang*

Particuology, 2017, 31: 161-169

105. New particle formation in China: Current knowledge and further directions

Wang, Z.; Z. Wu; D. Yue; D. Shang; S. Guo; J. Sun; A. Ding; L. Wang; J. Jiang; H. Guo; J. Gao; H. C. Cheung; L. Morawska; M. Keywood; M. Hu

Science of The Total Environment, 2017, 577: 258-266

106. Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes

Wang, Y.; S. Bao; S. Wang; Y. Hu; X. Shi; J. Wang; B. Zhao; J. Jiang; M. Zheng; M. Wu; A. G. Russell; Y. Wang; J. Hao

Science of The Total Environment, 2017, 580: 283-296

107. Particulate matter pollution over China and the effects of control policies

Wang, J.; B. Zhao; S. Wang; F. Yang; J. Xing; L. Morawska; A. Ding; M. Kulmala; V.-M. Kerminen; J. Kujansuu; Z. Wang; D. Ding; X. Zhang; H. Wang; M. Tian; T. Petäjä; J. Jiang; J. Hao

Science of The Total Environment, 2017, 584-585: 426-447

108. Nascent soot particle size distributions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flame

Tang, Q.; R. Cai; X. You*; J. Jiang*

Proceedings of the Combustion Institute, 2017, 36: 993-1000

109. Biocoal Briquettes Combusted in a Household Cooking Stove: Improved Thermal Efficiencies and Reduced Pollutant Emissions

Qi, J.; Q. Li; J. Wu*; J. Jiang*; Z. Miao; D. Li

Environmental Science & Technology, 2017, 51: 1886-1892

110. PM2.5 Emission Reduction by Technical Improvement in a Typical Coal-Fired Power Plant in China

Ma, Z.; Z. Li; J. Jiang; J. Deng; Y. Zhao; S. Wang; L. Duan

Aerosol and Air Quality Research, 2017, 17: 636-643

111. Impacts of coal burning on ambient PM2.5 pollution in China

Ma, Q.; S. Cai; S. Wang; B. Zhao; R. V. Martin; M. Brauer; A. Cohen; J. Jiang; W. Zhou; J. Hao; J. Frostad; M. H. Forouzanfar; R. T. Burnett

Atmos. Chem. Phys., 2017, 17: 4477-4491

112. Performance calibration of low-cost and portable particular matter (PM) sensors

Liu, D.; Q. Zhang; J. Jiang; D.-R. Chen

Journal of Aerosol Science, 2017, 112: 1-10

113. Boron Doped ZIF-67@Graphene Derived Carbon Electrocatalyst for Highly Efficient Enzyme-Free Hydrogen Peroxide Biosensor

Li, Z.; W. Wang; H. Cao; Q. Zhang; X. Zhou; D. Wang; Y. Wang; S. Zhang; G. Zhang; C. Liu; Y. Zhang; R. Liu*; J. Jiang*

Advanced Materials Technologies, 2017, 2: 1700224

114. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR)

Li, Z.; J. Jiang; Z. Ma; O. A. Fajardo; J. Deng; L. Duan

Environmental Pollution, 2017, 230: 655-662

115. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication

Li, Q.; J. Jiang*; S. X. Wang; K. Rumchev; R. Mead-Hunter; L. Morawska; J. M. Hao

Science of the Total Environment, 2017, 576: 347-361

116. Comparison of nanoparticle generation by two plasma techniques: Dielectric barrier discharge and spark discharge

Jiang, L.; Q. Li; D. Zhu; M. Attoui; Z. Deng; J. Tang; J. Jiang*

Aerosol Science and Technology, 2017, 51: 206-213

117. Modeling biogenic and anthropogenic secondary organic aerosol in China

Hu, J.; P. Wang; Q. Ying; H. Zhang; J. Chen; X. Ge; X. Li; J. Jiang; S. Wang; J. Zhang; Y. Zhao; Y. Zhang

Atmos. Chem. Phys., 2017, 17: 77-92

118. Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China

Cheng, Z.; X. Ma; Y. He; J. Jiang*; X. Wang; Y. Wang*; L. Sheng; J. Hu; N. Yan

Environmental Research, 2017, 156: 239-246

119. Aerosol surface area concentration: a governing factor in new particle formation in Beijing

Cai, R.; D. Yang; Y. Fu; X. Wang; X. Li; Y. Ma; J. Hao; J. Zheng*; J. Jiang*

Atmos. Chem. Phys., 2017, 17: 12327-12340

120. A new balance formula to estimate new particle formation rate: reevaluating the effect of coagulation scavenging

Cai, R.; J. Jiang*

Atmos. Chem. Phys., 2017, 17: 12659-12675

121. A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing

Cai, R.; D.-R. Chen; J. Hao; J. Jiang*

Journal of Aerosol Science, 2017, 106: 111-119


2016

122. Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process

Zhou, W.; J. Jiang*; L. Duan; J. Hao

Environmental Science & Technology, 2016, 50: 7861-7869

123. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies

Ma, Z.; J. Deng; Z. Li; Q. Li; P. Zhao; L. Wang; Y. Sun; H. Zheng; L. Pan; S. Zhao; J. Jiang*; S. Wang; L. Duan*

Atmospheric Environment, 2016, 131: 164-170

124. A spectrometer for measuring particle size distributions in the range of 3 nm to 10 μm

Liu, J.; J. Jiang*; Q. Zhang; J. Deng; J. Hao

Frontiers of Environmental Science & Engineering, 2016, 10: 63-72

125. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China

Li, Q.; X. Li; J. Jiang*; L. Duan; S. Ge; Q. Zhang; J. Deng; S. Wang; J. Hao*

Scientific Reports, 2016, 6: 19306

126. Influences of coal size, volatile matter content, and additive on primary particulate matter emissions from household stove combustion

Li, Q.; J. Jiang*; Q. Zhang; W. Zhou; S. Cai; L. Duan; S. Ge; J. Hao

Fuel, 2016, 182: 780-787

127. Improving the Energy Efficiency of Stoves To Reduce Pollutant Emissions from Household Solid Fuel Combustion in China

Li, Q.; J. Jiang*; J. Qi; J. Deng; D. Yang; J. Wu; L. Duan; J. Hao

Environmental Science & Technology Letters, 2016, 3: 369-374

128. Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies

Li, Q.; J. Jiang*; S. Cai; W. Zhou; S. Wang; L. Duan; J. Hao

Environmental Science & Technology Letters, 2016, 3: 98-103

129. Investigating the impact of regional transport on PM2.5 formation using vertical observation during APEC 2014 Summit in Beijing

Hua, Y.; S. Wang; J. Wang; J. Jiang; T. Zhang; Y. Song; L. Kang; W. Zhou; R. Cai; D. Wu; S. Fan; T. Wang; X. Tang; Q. Wei; F. Sun; Z. Xiao

Atmos. Chem. Phys., 2016, 16: 15451-15460

130. Continuous Measurement of Ambient Aerosol Liquid Water Content in Beijing

Fajardo, O. A.; J. Jiang*; J. Hao

Aerosol and Air Quality Research, 2016, 16: 1152-1164

131. Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth

Chu, B.; X. Zhang; Y. Liu; H. He; Y. Sun; J. Jiang; J. Li; J. Hao

Atmos. Chem. Phys., 2016, 16: 14219-14230

132. Status and characteristics of ambient PM2.5 pollution in global megacities

Cheng, Z.; L. Luo; S. Wang; Y. Wang; S. Sharma; H. Shimadera; X. Wang; M. Bressi; R. M. de Miranda; J. Jiang; W. Zhou; O. Fajardo; N. Yan; J. Hao

Environment International, 2016, 89-90: 212-221


2015

133. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities

Jiang, W.; P. Liang; B. Wang; J. Fang; J. Lang; G. Tian; J. Jiang; T. F. Zhu

Nature Protocols, 2015, 10: 768

134. Characteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement

Zheng, X.; Y. Wu; J. Jiang; S. Zhang; H. Liu; S. Song; Z. Li; X. Fan; L. Fu; J. Hao

Environmental Science & Technology, 2015, 49: 13492-13500

135. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement

Wang, Y.; J. Li; H. Jing; Q. Zhang; J. Jiang; P. Biswas

Aerosol Science and Technology, 2015, 49: 1063-1077

136. Assessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, China

Wang, J.; S. Wang; A. S. Voorhees; B. Zhao; C. Jang; J. Jiang; J. S. Fu; D. Ding; Y. Zhu; J. Hao

Atmospheric Environment, 2015, 123, Part B: 440-448

137. Impacts of load mass on real-world PM1 mass and number emissions from a heavy-duty diesel bus

Wang, C.; Y. Wu; J. Jiang; S. Zhang; Z. Li; X. Zheng; J. Hao

International Journal of Environmental Science and Technology, 2015, 12: 1261-1268

138. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

Li, Z.; J. Jiang; Z. Ma; S. Wang; L. Duan

Atmospheric Environment, 2015, 120: 227-233

139. Improving the Removal Efficiency of Elemental Mercury by Pre-Existing Aerosol Particles in Double Dielectric Barrier Discharge Treatments

Li, Q.; J. Jiang*; L. Duan; J. Deng; L. Jiang; Z. Li; J. Hao

Aerosol Air Qual. Res., 2015, 15: 1506-1513

140. A Review of Aerosol Nanoparticle Formation from Ions

Li, Q.; J. Jiang*; J. Hao

Kona Powder and Particle Journal, 2015, 57-74

141. Particulate Matter Distributions in China during a Winter Period with Frequent Pollution Episodes (January 2013)

Jiang*, J.; W. Zhou; Z. Cheng; S. Wang; K. He; J. Hao

Aerosol and Air Quality Research, 2015, 15: 494-503

142. Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China

Hua, Y.; Z. Cheng; S. Wang; J. Jiang; D. Chen; S. Cai; X. Fu; Q. Fu; C. Chen; B. Xu; J. Yu

Atmospheric Environment, 2015, 123: 380-391

143. Estimation of Aerosol Mass Scattering Efficiencies under High Mass Loading: Case Study for the Megacity of Shanghai, China

Cheng, Z.; J. Jiang*; C. Chen; J. Gao; S. Wang*; J. G. Watson; H. Wang; J. Deng; B. Wang; M. Zhou; J. C. Chow; M. L. Pitchford; J. Hao

Environmental Science & Technology, 2015, 49: 831–838


2014

144. Enhanced sulfate formation during China's severe winter haze episode in January 2013 missing from current models

Wang, Y.; Q. Zhang; J. Jiang; W. Zhou; B. Wang; K. He; F. Duan; Q. Zhang; S. Philip; Y. Xie

Journal of Geophysical Research: Atmospheres, 2014, 119: 2013JD021426

145. Impact of aerosol-meteorology interactions on fine particle pollution during China's severe haze episode in January 2013

Wang, J. D.; S. X. Wang; J. Jiang; A. J. Ding; M. Zheng; B. Zhao; D. C. Wong; W. Zhou; G. J. Zheng; L. Wang; J. E. Pleim; J. M. Hao

Environmental Research Letters, 2014, 9: 094002

146. Ultrafine particle emissions from essential-oil-based mosquito repellent products

Liu, J.; D. Fung; J. Jiang*; Y. Zhu*

Indoor Air, 2014, 24: 327-335

147. Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate

Jiang*, J.; C. Kim; X. Wang; M. R. Stolzenburg; S. L. Kaufman; C. Qi; G. J. Sem; H. Sakurai; N. Hama; P. H. McMurry

Aerosol Science and Technology, 2014, 48: 1207-1216

148. Hygroscopicity of particles generated from photooxidation of alpha-pinene under different oxidation conditions in the presence of sulfate seed aerosols

Chu, B. W.; K. Wang; H. Takekawa; J. H. Li; W. Zhou; J. Jiang; Q. X. Ma; H. He; J. M. Hao

Journal of Environmental Sciences, 2014, 26: 129-139

149. Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in α-pinene photooxidation

Chu, B.; Y. Liu; J. Li; H. Takekawa; J. Liggio; S.-M. Li; J. Jiang; J. Hao; H. He

Environmental Pollution, 2014, 193: 88-93

150. Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011

Cheng, Z.; S. Wang; X. Fu; J. G. Watson; J. Jiang; Q. Fu; C. Chen; B. Xu; J. Yu; J. C. Chow; J. Hao

Atmospheric Chemistry and Physics, 2014, 14: 4573-4585

151. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event

Cao, C.; W. Jiang; B. Wang; J. Fang; J. Lang; G. Tian*; J. Jiang*; T. F. Zhu*

Environmental Science & Technology, 2014, 48: 1499-1507


2013

152. Assessing Young People’s Preferences in Urban Visibility in Beijing

Fajardo, O. A.; J. Jiang*; J. Hao*

Aerosol and Air Quality Research, 2013, 13: 1536-1543

153. Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation

Chu, B.; J. Hao; J. Li; H. Takekawa; K. Wang; J. Jiang

Frontiers of Environmental Science & Engineering, 2013, 7: 1-9

154. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China

Cheng, Z.; S. Wang; J. Jiang; Q. Fu; C. Chen; B. Xu; J. Yu; X. Fu; J. Hao

Environmental Pollution, 2013, 182: 101-110

155. Characteristics and health impacts of particulate matter pollution in China (2001–2011)

Cheng, Z.; J. Jiang*; O. Fajardo; S. Wan; J. Hao*

Atmospheric Environment, 2013, 65: 186-194


2012

156. Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China

Zhang, H.; S. Wang; J. Hao; L. Wan; J. Jiang; M. Zhang; H. E. S. Mestl; L. W. H. Alnes; K. Aunan; A. W. Mellouki

Atmospheric Environment, 2012, 51: 94-99

157. Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model

Zhang, H.; J. Li; Q. Ying; J. Z. Yu; D. Wu; Y. Cheng; K. He; J. Jiang

Atmospheric Environment, 2012, 62: 228-242

158. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

Wiedensohler, A.; W. Birmili; A. Nowak; A. Sonntag; K. Weinhold; M. Merkel; B. Wehner; T. Tuch; S. Pfeifer; M. Fiebig; A. M. Fjaraa; E. Asmi; K. Sellegri; R. Depuy; H. Venzac; P. Villani; P. Laj; P. Aalto; J. A. Ogren; E. Swietlicki; P. Williams; P. Roldin; P. Quincey; C. Huglin; R. Fierz-Schmidhauser; M. Gysel; E. Weingartner; F. Riccobono; S. Santos; C. Gruning; K. Faloon; D. Beddows; R. Harrison; C. Monahan; S. G. Jennings; C. D. O'Dowd; A. Marinoni; H. G. Horn; L. Keck; J. Jiang; J. Scheckman; P. H. McMurry; Z. Deng; C. S. Zhao; M. Moerman; B. Henzing; G. de Leeuw; G. Loschau; S. Bastian

Atmospheric Measurement Techniques, 2012, 5: 657-685

159. Chemical characteristics of size-resolved PM2.5 at a roadside environment in Beijing, China

Song, S.; Y. Wu; J. Jiang; L. Yang; Y. Cheng; J. Hao

Environmental Pollution, 2012, 161: 215-221

160. Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data

Han, X.; N. Corson; P. Wade-Mercer; R. Gelein; J. Jiang; M. Sahu; P. Biswas; J. N. Finkelstein; A. Elde; G. Oberdörster

Toxicology, 2012, 297: 1-9

161. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx

Chu, B.; J. Hao; H. Takekawa; J. Li; K. Wang; J. Jiang

Atmospheric Environment, 2012, 55: 26-34

162. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

Chen, M.; M. Titcombe; J. Jiang; C. Jen; C. Kuang; M. L. Fischer; F. L. Eisele; J. I. Siepmann; D. R. Hanson; J. Zhao; P. H. McMurry

PNAS, 2012, 109: 18713-18718


2011

163. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties

Suttiponparnit, K.; J. Jiang; M. Sahu; S. Suvachittanont; T. Charinpanitkul; P. Biswas

Nanoscale Research Letters, 2011, 6:

164. First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events

Jiang*, J.; J. Zhao; M. Chen; F. L. Eisele; J. Scheckman; B. J. Williams; C. Kuang; P. H. McMurry

Aerosol Science and Technology, 2011, 45: ii-v

165. Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm

Jiang*, J.; M. Chen; C. Kuang; M. Attoui; P. H. McMurry

Aerosol Science and Technology, 2011, 45: 510 - 521

166. Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification

Jiang, J.; M. Attoui; M. Heim; N. A. Brunelli; P. H. McMurry; G. Kasper; R. C. Flagan; K. Giapis; G. Mouret

Aerosol Science and Technology, 2011, 45: 480 - 492

167. Ambient Pressure Proton Transfer Mass Spectrometry: Detection of Amines and Ammonia

Hanson, D. R.; P. H. McMurry; J. Jiang; D. Tanne; L. G. Huey

Environmental Science & Technology, 2011, 45: 8881-8888

168. Validation of an LDH assay for assessing nanoparticle toxicity

Han, X.; R. Gelein; N. Corson; P. Wade-Mercer; J. Jiang; P. Biswas; J. N. Finkelstein; A. Elder; G. Oberdörster

Toxicology, 2011, 287: 99-104


2010 and before

169. Concept of Assessing Nanoparticle Hazards Considering Nanoparticle Dosemetric and Chemical/Biological Response Metrics

Rushton, E. K.; J. Jiang; S. S. Leonard; S. Eberly; V. Castranova; P. Biswas; A. Elder; X. Han; R. Gelein; J. Finkelstein; G. Oberdorster

Journal of Toxicology and Environmental Health, Part A, 2010, 73: 445 - 461

170. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

Jiang, J.;G. Oberdörster; P. Biswas

Journal of Nanoparticle Research, 2009, 11: 77-89

171. Synthesis of visible light-active nanostructured TiOx (x < 2) photocatalysts in a flame aerosol reactor

Dhumal, S. Y.; T. L. Daulton; J. Jiang; B. Khomami; P. Biswas

Applied Catalysis B: Environmental, 2009, 86: 145-151

172.Crystal structure mediates mode of cell death in TiO2 nanotoxicity

Braydich-Stolle; L. K., N. M. Schaeublin; R. C. Murdock; J. Jiang; P. Biswas; J. J. Schlager; S. M. Hussain

Journal of Nanoparticle Research, 2009, 11: 1361-1374

173. Quench-Ring Assisted Flame Synthesis of SiO2-TiO2 Nanostructured Composite

Worathanakul, P.; J. Jiang; P. Biswas; P. Kongkachuichay

Journal of Nanoscience and Nanotechnology, 2008, 8: 6253-6259

174. One-step synthesis of noble metal-titanium dioxide nanocomposites in a flame aerosol reactor

Tiwari, V.; J. Jiang; V. Sethi; P. Biswas

Applied Catalysis A: General, 2008, 345: 241-246

175. Charged fraction and electrostatic collection of ultrafine and submicrometer particles formed during O2-CO2 coal combustion

Suriyawong, A.; C. J. Hogan; J. Jiang; P. Biswas

Fuel, 2008, 87: 673-682

176. Does nanoparticle activity depend upon size and crystal phase?

Jiang, J.; G. Oberdörster; A. Elder; R. Gelein; P. Mercer; P. Biswas

Nanotoxicology, 2008, 2: 33 - 42

177. Model for nanoparticle charging by diffusion, direct photoionization, and thermionization mechanisms

Jiang, J.; M. H. Lee; P. Biswas

Journal of Electrostatics, 2007, 65: 209-220

178. Aerosol charging and capture in the nanoparticle size range (6-15 nm) by direct photoionization and diffusion mechanisms

Jiang, J.; C. J. Hogan; D. R. Chen; P. Biswas

Journal of Applied Physics, 2007, 102: 034904

179. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

Jiang, J.; D. R. Chen; P. Biswas

Nanotechnology, 2007, 18: 285603

180. Trends in anthropogenic mercury emissions in China from 1995 to 2003

Wu, Y.; S. X. Wang; D. G. Streets; J. M. Hao; M. Chan; J. Jiang

Environmental Science & Technology, 2006, 40: 5312-5318

181. Anthropogenic mercury emissions in China

Streets, D. G.; J. M. Hao; Y. Wu; J. Jiang; M. Chan; H. Z. Tian; X. B. Feng

Atmospheric Environment, 2005, 39: 7789-7806